
5CHAPTER

Binomial Model

The binomial model is a discrete time model, and it is the simplest possible nontrivial model of a

financial market.

• Almost all important concepts which we will further study later on, have a most intuitive and

accessible version in the binomial case

• The binomial model is often used in practice

The model is very easy to understand, the mathematics required to analyze it can be set at high school

level. For good reasons, we will build it on probability theory reviewed in Chapter 2 and 3.

The building block is one-step binomial model, assume that a coin toss is driving the market: the

stock price goes up from S0 to S0u with probability p (of getting a head), or goes down to S0d, for

brevity, we denoted this one-step binomial model by BM(S0, u, d, p, r) with r being the risk-free rate.

For a T -step binomial model driven by a coin toss sequence, we denote it by BMT (S0, u, d, p, r).

In this text, a claim is the general term for financial assets. A contingent claim is another term for a

derivative with a payoff that is dependent on the realization of some uncertain future event. By creating

a right and not an obligation, the contingent claim acts as a form of insurance against counterparty risk.

Any derivative instrument that isn’t a contingent claim is called a forward commitment.
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158 Binomial Model

§ 5.1 One-step Binomial Model

One period has two time points, we call the beginning of the period time zero and the end of the

period time one. Free of arbitrage and completeness are most straightforward in the settings of one-step

binomial model.

5.1.1 Price of a Call Option

We start by considering a very simple situation.

Example 5.1.1: We have a stock presently priced at $100. In exactly one year the stock price will

be either $90 or $120, with equal possibility. The current interest rate is 12.5% compounded yearly.

What is the fair price for a European call option on the stock with a strike price $105 expiring in

one year?

Let the present time be t = 0, then the stock price is S0 = 100. For the risk-free bond, B0 = 1, let

the continuous compounding interest rate be r, then B1 = er = 1.125. At the future time t = 1, the

payoffs of stock and option are depicted in the following figure:

100

120

90

15

0

X0

To capture the two states of stock price movements, we assume that the random source is a coin toss,

Ω = {H,L}, with H and L standing for head and tail respectively. At t = 1, the stock price is S1, with

S1(H) = 120 and S1(L) = 90. The payoff of the option is X , with X(H) = 15 and X(L) = 0. We are

interest in valuing X0 = ℘(X), the price of the call option.

Remark: At t = 0, S1(H) = 120 and S1(L) = 90 are known numbers, but S1 is a random variable.

More exactly, S1 is a function that maps {H} to 120 and {L} to 90:

L

H

90

120

S1 : Ω→ R

We are not totally blind to random variables, we do not know nothing at all. We do know something,

S1(H) and S1(L) are numbers given, but which one will be taken does not known at t = 0. Only at
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t = 1, the state H or L is revealed, then the (function) value of S1 is determined accordingly.

A: Replication

Replicating imitates a given asset, usually a financial derivative, by searching for a portfolio of traded

assets. Let us consider the following portfolio V :

• Long: 0.5 shares of stock

• Short: 40 bonds

In other words, to form portfolio V , we buy 0.5 shares of stock, and borrow $40. By law of linear

combination, the price of portfolio V is V0 = 0.5S0− 40B0 = 10, the value of portfolio V at time t = 1

is

V = 0.5S1 − 40B1

In more details, if the stock goes up

V (H) = 0.5S1(H)− 40B1(H) = 0.5 · 120 + (−40) · 1.125 = 15 = X(H)

If the stock goes down

V (L) = 0.5S1(L)− 40B1(L) = 0.5 · 90 + (−40) · 1.125 = 0 = X(L)

We see that the payoff of the option is replicated, X = V , portfolio V is called the replicating portfolio

of the option. Thus, the price of the option is

X0 = ℘(X) = ℘(V ) = V0 = 10

B: Hedge

In a perfect hedge, two investments were combined to produce a fixed return such that the risks

are completely offset. In this sense, hedging is the replication of the risk-free asset. Let us create the

following hedging portfolio V :

• Long: 0.5 shares of stock

• Short: 1 option

By law of linear combination, the value of portfolio V at time t = 1 is V = 0.5S1 −X: In more details,

if it is in the up state

V (H) = 0.5S1(H)−X(H) = 0.5 · 120− 15 = 45

and if it is in the down state

V (L) = 0.5S1(L)−X(L) = 0.5 · 90− 0 = 45

the value remains constant, it is a risk-free asset. Thus

V0 = ℘(V ) = ℘(45) = 45℘(1) = 45e−r = 40

Since V0 = 0.5S0 −X0, we have X0 = 0.5S0 − V0 = 10.

Remark: Before we know a good theory, we may know some working ways to tackle the real world

problems.
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5.1.2 Model Setup

We now discuss a simple one-step binomial model in which we are interested in valuing an option on

the stock (a European call option, or any other derivative dependent on the stock).

A: Market Setting

We have two points in time, t = 0 (“today”) and t = 1 (“tomorrow”, next year, etc). In the model we

have two assets: a risk-free bond (risk-free rate at constant r per period) and a stock. At time t the price

of a bond is denoted by

Bt = B(t) = ert t = 0, 1

and the price of one share of the stock is denoted by St = S(t). Today’s stock price is S0, the future price

of stock S1 is described as follows:

S1 =

 S0u p

S0d 1− p
Figure 5.1 shows the price processes of the bond and the stock.

Figure 5.1: Binomial Model There are two assets: A risk-free bond at priceB0 = 1 and a stock at price S0.

At the future time t = 1, the bond’s price is B1 = er, and the price of stock S1 is a random variable, taking

value S1(H) = S0u with probability p and S1(L) = S0d with probability 1− p.
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S0u
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1 er
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Let the market be driven by a coin toss, we denote the sample space Ω = {H,L}, where H standing

for head and L for tail. The coin is not necessary fair, with probability P(H) = p, P(L) = 1 − p. Let

the event space be F = {∅,Ω, {H}, {L}}, then (Ω,F ,P) is the probability space for binomial model.

Define the up-and-down random variable Z as

Z =

 u p

d 1− p
(5.1)

then, Z(H) = u and Z(L) = d, Z is the random source of the market, and

S1 = S0Z

We assume that today’s stock price S0 is known at time 0, as are the
:::::::
positive

:::::::::
constants u, d, and p, with

d < u. For brevity, the market setting of one-step binomial model will be denoted by BM(S0, u, d, p, r).
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B: Free of Arbitrage

We will study the behavior of various portfolios in the BM(S0, u, d, p, r) market, and to this end we

define a portfolio as a vector

h =

a
b

 = [a; b]

The interpretation is that a is the number of shares of the stock held by us, whereas b is the number of

risk-free bonds we hold in our portfolio. In one-step binomial model, the marketable payoff space is

X = {aS1 + bB1 : a, b ∈ R} = sp(S1, B1)

Remark: Following the perfect market assumption, it is quite acceptable for a and b to be positive as

well as negative. If, for example, b = 3, this means that we have bought three bonds at time t = 0. If on

the other hand a = −2, this means that we have sold two shares of the stock at time t = 0, we borrow two

shares and pay back at time 1. In financial jargon we have a long position in 3 bonds and a short position

in 2 shares of the stock. It is an important assumption of the model that short positions are allowed.

Definition 5.1: Let xt = [St;Bt], the value process of portfolio h = [a; b] is defined by

Vt = x′
th = aSt + bBt t = 0, 1

or, in more detail

V0 = b+ aS0

V1 = ber + aS0Z

At time t = 1, please note that we do not rebalance the portfolio, the portfolio is formed at t = 0, and

hold to t = 1. When the new price reveal, the value of the portfolio change.

By the definition of an arbitrage opportunity (Condition 1.13 on page 23), in one-step binomial model,

an arbitrage portfolio is a portfolio with the properties (the symbol “⪈”, weak greater than, is introduced

in page 18 of §1.2.4)

V0 = 0, V1 ⪈ 0

A strong arbitrage portfolio is a portfolio with the properties V0 = 0 and V1 > 0. We interpret the

existence of an arbitrage portfolio as equivalent to a serious instance of mispricing on the market. In a

perfect market, such chances will be wiped out immediately for investors prefer more money to less.

Theorem 5.2: The market BM(S0, u, d, p, r) is free of arbitrage if and only if the following conditions

hold:

d < er < u (5.2)

Remark: The condition (5.2) has an easy economic interpretation. It simply says that the return on

the stock is not allowed to dominate the return on the bond and vice versa. Which is illustrated in the

following figure, where the point (u, d) indicates the (gross) return of stock
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We are so lucky in binomial model, for we can easily judge whether the market is free of arbitrage or not.

For other models of financial market, we usually assume that the market is absence of arbitrage, we are

not able to find tractable restrictions on market parameters to rule out arbitrage opportunities.

In the BM(S0, u, d, p, r) market, condition (5.2) is equivalent to the positivity postulate in §1.2.4.

We will always assume that condition (5.2) is true, and thus the market is free of arbitrage. In the coming

text, we will prove the FTAP (Theorem 1.3) for one-step binomial model: there is a positive linear pricing

function ℘(·) in market BM(S0, u, d, p, r) such that ℘(S1) = S0 and ℘(1) = e−r.

5.1.3 Completeness

We go on to study pricing problems for financial derivatives in market BM(S0, u, d, p, r).

Definition 5.3: A claim is any random variable X defined on (Ω,F) with finite expectation under real

world probability measure P. A financial derivative is any claim X of the form X = f(S1), where the

function f is called contract function.

For financial derivatives, we interpret a given derivative instrument X as a contract which pays

X = f(S1) =

 xu = X(H) = f(S0u) Z = u

xd = X(L) = f(S0d) Z = d

dollar to the holder of the contract at time t = 1. A typical example would be a European call option on

the stock with strike price K, assume that S0d < K < S0u for practical interests, we see that

X = f(S1) = (S1 −K)+ = max (S1 −K, 0) =

 S0u−K Z = u

0 Z = d

If X = f(S0, S1), because S0 is a known constant, X is effectively a function of S1 only. The primitive

assets are trivial derivatives, they are usually excluded from the set of financial derivatives.

Definition 5.4: A given claim X is said to be reachable, or attainable, or marketable, if there exists a

portfolio h = [a; b] such that

V1 = aS1 + bB1 = X

In that case we say that the portfolio h = [a; b] is a replicating portfolio of claim X . If all claims can
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be replicated we say that the market is complete.

We see that in a complete market we can in fact replicate all claims, so it is of great interest to

investigate when a given market is complete. For the one-step binomial model we find that the market is

complete.

Proposition 5.5: The BM(S0, u, d, p, r) market is complete.

Proof. For an arbitrary claim X , we want to show that there exists a portfolio h = [a; b] such that

aS1 + bB1 = X

If we write this out in detail we want to find a solution [a; b] to the following system of equations

aS0u+ ber = xu (5.3)

aS0d+ ber = xd

Since by assumption u > d, this linear system has a unique solution, and a simple calculation shows

that the replicating portfolio is given by

a =
1

S0
·
xu − xd
u− d

(5.4)

b = e−r xdu− xud
u− d

We see that completeness needs only u > d, not the condition (5.2). Thus, in our one-step binomial

model, completeness is a property of market that does not require the absence of arbitrage.

Because of the completeness, the payoff of any conceivable asset is in the marketable payoff space X.

Let X be a claim, X(H) = xu <∞ and X(L) = xd <∞, define

x =

xu
xd


We find that vectors in R2 and payoffs have one-to-one correspondence, mathematically, the plane R2 is

isomorphic1 to the marketable payoff space X. As a consequence, a portfolio in the market is equivalent

to a linear combination in R2. For this reason, in binomial model, linear algebra and probability theory

can be used interchangeably at one’s convenience. The analysis of a claim X can be done by the analysis

of the corresponding vector x.

For financial derivatives, the contract functionX = f(S1) can be a nonlinear function. For example,

X = S2
1 , Eq (5.4) translate the nonlinear function to a linear function of S1, by the replication portfolio

1Isomorphic objects may be considered the same as long as one considers only these properties and their consequences. It is

valuable to distinguish between equality and isomorphism: Equality is when two objects are exactly the same, and everything

that’s true about one object is true about the other, while an isomorphism implies everything that’s true about a designated part

of one object’s structure is true about the other’s.
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[a; b]

X = f(S1) = S2
1 = aS1 + bB1

Our main problem is now to determine the “fair” price for a given claim X with contract function f . If

such an object exists at all, what is the price X0 at t = 0?

Proposition 5.6: In BM(S0, u, d, p, r) market, for any claim X , there is a unique replicating portfolio

h = [a; b] by Equation (5.4), such that X = aS1 + bB1, and the price of the claim X at t = 0, will

equal to the price of replicating portfolio

X0 = aS0 + bB0

Besides, define

q =
er − d
u− d

(5.5)

We have

X0 = ℘(X) = e−r(qxu + (1− q)xd) (5.6)

Proof. The existence and uniqueness of h follows from the fact that the linear system (5.3) has a unique

solution. The price of the claim X is

X0 = ℘(X) = ℘(aS1 + bB1) = a℘(S1) + b℘(B1) = aS0 + b

For any X ∈ X, with q defined in Eq (5.5)

e−r(qxu + (1− q)xd) = aS0 + b = X0

The q defined in Eq (5.5) has played a significance role in the pricing of derivatives, it deserves an

in-depth discussion in the coming section §5.2.

Example 5.1.2: Given market BM(S0, u, d, p, r) by

S0 = 4 u = 2 d = 1/2 r = ln(4/3)

Find the price of the European call and put option on the stock with strike price K = 5.

By Eq (5.5)

q =
er − d
u− d

=
4
3 −

1
2

2− 1
2

=
5

9

For the call option with K = 5, xu = 2 · 4− 5 = 3, xd = 0

V0 = e−r(qxu + (1− q)xd) =
3

4

(
5

9
· 3 + 0

)
=

5

4

For the put option with K = 5, xu = 0, xd = 5− 1
2 · 4 = 3

V0 = e−r(qxu + (1− q)xd) =
3

4

(
0 +

(
1− 5

9

)
· 3
)

= 1

Using formula (5.6), we do not need to solve linear system (5.3) repeatedly.
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Delta hedging: In Equation (5.4), a is the ratio of the change in the derivative price to the change in

the stock price as we move between the nodes. We can construct a portfolio of risky assets, the stock St
and claim X , to produce a fixed return, the risk-free asset. We see that

X − aS1 = bB1

thus if we long one claim and short a shares of stock, we produce a risk-free asset bB1 in the future time.

The construction of a riskless portfolio is sometimes referred to as delta hedging. And the delta of the

derivative is
xu − xd
S0u− S0d

= a

the ratio of the change in the price of the derivative to the change in the price of the underlying stock.
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§ 5.2 Risk Neutral Valuation

When the market is free of arbitrage, the condition (5.2) is true in BM(S0, u, d, p, r) market, thus the

q in Equation (5.5) must be

0 < q < 1

By the definition of probability measure (Definition 2.2), we see that the weights in formula (5.6), the q

and 1− q can be interpreted as probabilities for a new probability measure Q defined by

Q(H) = Q(Z = u) = q

Q(L) = Q(Z = d) = 1− q

Denoting expectation under Q measure by EQ (·), we have in Q world

EQ(Z) = qu+ (1− q)d = er (5.7)

Thus, random source Z grows at risk-free rate in Q world.

From Eq (5.7), we see that if masses q and 1− q are attached at the points with coordinates u and d

on the real axis, then the centre of mass will be at er.

0 1 +∞
ud er

1− q q

In this barycentric interpretation, the q is a mass. We may also have a geometric interpretation for q

O

(1, 0)

(0, 1)

R(H)

R(L)

S(u, d)

B(er, er)

E(u− er, d− er)

Q
(q
, 1
− q

)

The returns of assets are depicted in R2: point B is the (gross) return of risk-free asset, point S is the

return of stock. E = S − B is the excess return of stock over bond, point Q, located at (q, 1− q), is on

the line joining the points (1, 0) and (0, 1). We see that OQ ⊥ OE since Eq (5.7) gives the orthogonal

condition q(u− er)+ (1− q)(d− er) = 0. Note that all returns are on the line joining pointB and point

S, hence point Q is not a return (a return is a payoff with unit price).



Risk Neutral Valuation 167

5.2.1 Pricing Probability

Considering the following two investments at t = 0

(a) Invest S0 dollars simply at the risk-free asset, the amount at t = 1 is S0er

(b) Buy one share of stock at S0, the expected value at t = 1 is EQ (S1) in Q world

Then

EQ (S1) = EQ (S0Z) = S0 E
Q (Z) = S0e

r (5.8)

Which exactly states that using probability measure Q, these two investments are equally attractive to

risk-neutral investors.

In general, for any payoff X , by formula (5.6)

EQ(X) = qxu + (1− q)xd = X0e
r (5.9)

Which shows that, under probability measure Q, EQ(X/X0) = er, the expected return2 equals the

risk-free return. Whatever it is risk-free or risky, whatever it is a derivative or a primary asset, investors

require no compensation for risk, the expected return is the risk-free return. In a risk-neutral world all

individuals are indifferent to risk, thus
:
a
::::::::::::
deterministic

::::::
dollar

::
is

:::::::::
equivalent

::
to

:::
an

::::::::
expected

::::::
dollar. For this

reason, the world with probability measure Q is risk neutral in this situation, probability measure Q is

called risk neutral probability measure, Q world is a risk-neutral world.

Remark: S0 and X0 are numbers. We know that X0 = ℘(X), but the number X0 is not necessary

bound to the claim X . We can buy X0 shares of stock, or X0 dollars of stock (X0/S0 shares of stock).

A: Risk Neutral Probability is Just a Tool

Q world is an imaginary world, a mathematical sleight of hand just to simplify derivative pricing.

Other than the interpretation of a probability, q is a shortcut to solve the linear system (5.3): We multiply

xu by a number q (to be determined) and xd by 1− q, then add them up

qxu + (1− q)xd = aS0[qu+ (1− q)d] + ber

Let’s set qu+ (1− q)d = er, then

qxu + (1− q)xd = aS0e
r + ber = (aS0 + b)er = X0e

r

Besides, we find that q = er−d
u−d depends only on the market setting, not on the payoff X of given claim.

In Q world,

qxu + (1− q)xd = EQ(X)

is the expected payoff from the derivative. Thus, the value of the derivative today X0 = e−r EQ(X), is

its expected future value discounted at the risk-free rate (when interest rates are not random).

2The log expected return in Q world is

ln(EQ(S1/S0)) = r

However, the expected log return is EQ(ln(S1/S0)) < ln(EQ(S1/S0)) = r. (Jensen’s inequality)
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Remark: like an auxiliary line in geometry problem, we employ q (determined by the market) to find

the price of any claim directly. Using matrix notation, let

X =

S0u S0d

er er

 p =

S0
B0

 x =

xu
xd


by X′h = x, there is unique solution h = [a; b] = (X−1)′x. Define

q = er ·X−1p =

 q

1− q


we have formula (5.6)

X0 = aS0 + bB0 = h′p = x′X−1p = e−rx′q = e−r(qxu + (1− q)xd)

for each payoff x, we do not firstly solve its replicating portfolio h, but employ the market-determined

vector q to compute the price directly.

B: How to Remember the Pricing Probability

In Q world, by formula (5.6)

er = EQ (Z) = qu+ (1− q)d

solve this equation of q. Setting the probability of the up movement equal to q is, therefore, equivalent to

assuming that the expected growth on the stock equals the risk-free interest rate.

5.2.2 Pricing Formula

As we know, it is natural to interpret the variable q in the pricing formula as the probability of an up

movement in the stock price.

Theorem 5.7 (Risk Neutral Valuation): The market BM(S0, u, d, p, r) is free of arbitrage if and only if

there is a risk-neutral probability measure Q, and for any claim (payoff) X , the price is

X0 = e−r EQ(X)

It is valid to assume (with complete impunity) the world is risk neutral when pricing derivatives. The

resulting derivative prices are correct not just in a risk-neutral world, but in the real world as well.

A: Irrelevance of the Real World Probability

We do not make any assumption about the probabilities of up and down movements in order to

compute the derivative price. The pricing formula

X0 = ℘(X) = e−r(qxu + (1− q)xd)

does not involve the probabilities of the stock price moving up or down. For example, we get the same

derivative price when the probability of an upward movement is 0.5 as we do when it is 0.9. The price of
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a derivative is irrelevant to the real world probability, thus irrelevant to the stock’s expected return (when

r, u and d are fixed). This is surprising and seems counterintuitive.

The key reason is that we are not valuing the derivative in absolute terms. We want to price the

derivative in a way that is consistent with the underlying prices given by the market. The idea instead is

replication:

• We find the replicating portfolio by solving a system of equations in (5.3), there are no probabilities

in this system.

• The replicating portfolio must work on all stock price paths. This replication works regardless of

whether the stock goes up or down. They are equal state by state, the probability of each state does

not matter.

We create the derivative from trading assets, and determine the price of the derivative in terms of the

market prices of the underlying assets. The probabilities of the up and down moves in real world are

irrelevant. What matters is the size of the two possible moves (the values of u and d).

Remark: random variables X = Y is irrelevance of probability measure, and replication means

X = Y state by state, thus ℘(X) = ℘(Y ) has nothing to do with probability measure.

B: Redundance of Derivatives

A financial derivative is defined in terms of some underlying asset which already exists on the market.

In a complete market, derivatives can be replaced by underlying asset: Like the binomial model above,

there is indeed a unique price for any claim. The price is given by the value of the replicating portfolio,

and a negative way of expressing this is as follows: There exists a theoretical price for the claim precisely

because of the fact that, strictly speaking, the claim is superfluous—it can equally well be replaced by its

replicating portfolio.

Remark: the net supply of any derivative is zero.
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§ 5.3 Multi-step Binomial Model

A multi-step binomial model is a stack of one-step binomial models. The following two-step binomial

model is a quick illustration: At time t = 1, one-step binomial models are repeated for the two states

respectively

S0

S0u

S0d

S0u
2

S0ud

S0d
2 xdd

xud

xuu

xu

xd

X0

Let the payoff of a derivative at time 2 isX = f(S2), withX(HH) = xuu,X(HL) = xud = X(LH) =

xdu and X(LL) = xdd. At time t = 1, if there is an up movement, from equation (5.6) we have

xu = e−r(qxuu + (1− q)xud)

Repeated application of equation (5.6) for a down movement gives

xd = e−r(qxdu + (1− q)xdd)

Thus, at time t = 0

X0 = e−r(qxu + (1− q)xd)

= e−2r(q2xuu + 2q(1− q)xud + (1− q)2xdd) = e−2r EQ(X)

Not surprisingly, we arrive at a risk neutral pricing formula since q can be interpreted as the probability

of an up movement. However, note that there are intermediate tradings, we rebalance the replication

portfolio (Eq 5.4) at t = 1.

5.3.1 Market Setting

We can generalize the model to T time steps: As before we have two underlying assets, a risk-free

bond with price processBt and a stock with price process St. We assume a constant deterministic period

rate of interest at r (continuous compounding). This means that the bond price dynamics are

Bt = ert t = 0, 1, 2, · · · , T
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Let Z1, Z2, · · · , ZT be i.i.d up-and-down random variables, taking only the two values u and d with

P(Zt = u) = p P(Zt = d) = 1− p t = 1, 2, · · · , T

The dynamics of the stock price are given by the following stochastic process

St = St−1Zt t = 1, 2, · · · , T

We can illustrate the stock dynamics by means of a tree, as in Figure 5.2. Note that the tree recombines

in the sense that an up movement followed by a down movement leads to the same stock price as a down

movement followed by an up movement.

Figure 5.2: Multi-step Binomial Model There are two assets: the bond price dynamics are Bt = ert,

and the stochastic process for stock price are St = St−1Zt, where the i.i.d up-and-down random variables

Z1, Z2, · · · , ZT are the risk source of the market. The tree recombines, every non-leaf node starts a one-step

binomial model. An example of T = 4 gives the following tree

S0

S0u

S0d

S0u
2

S0ud

S0d
2

S0u
3

S0u
2d

S0ud
2

S0d
3

S0u
4

S0u
3d

S0u
2d2

S0ud
3

S0d
4

We assume that today’s stock price S0 is known at time 0, as are the positive constants u, d, and p.

What is more, we assume that condition (5.2) is true, say, d < er < u. For brevity, the market setting of

T -step binomial model will be denoted by BMT (S0, u, d, p, r).

In the BMT (S0, u, d, p, r) market, we assume that the market is driven by a sequence of coin tosses,

we define the sample space naturally as

Ω = {w1w2 · · ·wT : wt ∈ {H,L}, t = 1, 2, · · · , T}

and the event space as the power set of sample space, F = 2Ω. Let It be the information available up to

time t, then I0 = {∅,Ω}, and (since Zt = St/St−1)

It = σ(Z1, Z2, · · · , Zt) = σ(S1, S2, · · · , St) t = 1, 2, · · · , T

As time goes by, the information set becomes larger, It−1 < It. Note that It ̸= σ(St) and IT = F .

A sequence of coin tosses w1w2 · · ·wT is called a state or path, there are 2T paths. For each path

w1w2 · · ·wT there is a unique number i = 1+
∑T

t=1 2
T−t1wt=H , we say w1w2 · · ·wT is the i-th state or
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path, and denote it by ωi. An example with T = 3 is shown in Figure 5.3, where ω3 = LHL marks the

path of down-up-down.

Figure 5.3: States of World Tossing a coin three times, a sequence of coin tosses w1w2w3 is a path. We

can number the path w1w2w3 by the number i = 1 + 1w1=H + 2 · 1w2=H + 4 · 1w3=H , and denote it by ωi.

Clearly, the number of path LHL is 3, hence ω3 = LHL. The collection of paths {ω1, ω2, · · · , ω8} is the

sample space Ω.

ω1 = LLL

ω2 = LLH

ω3 = LHL

ω4 = LHH

ω5 = HLL

ω6 = HLH

ω7 = HHL

ω8 = HHH

Remark: In a probability world, the sample space is known, a doable event space is selected and a

probability measure is equipped with. A market modelled by probability theory is limited to a world of

deterministic uncertainty or known unknowns. The real world is uncertain, there are unknown unknowns,

we may not know the full states of future world, even we know the sample space, we may not know the

real world probability. A world govern by probability model is deterministic in the sense that we know

the deterministic set of outcomes and probabilities for sure, the uncertainty part is which outcome will

be realized.

5.3.2 Self-financing Process

There are only two primary assets in the multi-step binomial model, we have the following definition

of self-financing portfolio as a special case of Definition 1.2.

Definition 5.8: In the BMT (S0, u, d, p, r) market, the rebalancing of portfolio is self-financing if

ht = [at; bt] ∈ It t = 0, 1, 2, · · · , T − 1

such that ht is a function of S0, S1, · · · , St, and

at−1St + bt−1Bt = atSt + btBt t = 1, 2, · · · , T − 1 (5.10)

A portfolio process {ht} is self-financing if each rebalancing is self-financing. Let hT = [aT−1; bT−1],

the holding sequence {ht}Tt=0 of a self-financing portfolio is called a self-financing trading strategy or

portfolio strategy. And the set of all portfolio strategies is denoted by S.
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Remark: For clarity, a portfolio process {ht} will be simply written by portfolio ht when it is clear

that we are not mentioning the holding at time t but the dynamics of the portfolio.

We allow the holdings to be a predictable contingent strategy, i.e. the portfolio we buy at time t is

allowed to depend on all information up to time t, by observing the evolution of the stock price. We

are, however, not allowed to look into the future. Thus, all portfolio rebalancings are predictable unless

explicitly stated. The value process corresponding to the portfolio ht is defined by

Vt = V (ht) = atSt + btBt t = 0, 1, 2, · · · , T

Remark: At time T , VT = aTST + bTBT , we set aT = aT−1 and bT = bT−1 without rebalancing.

At time t, once the asset prices, Bt and St are revealed to the investor (price is right continuous), we

change the holdings from ht−1 to ht in response to the arrival of the new information. We hold portfolio

ht = [at; bt] at period t + 1 for the time interval (t, t + 1]. The entity Vt above is of course the market

value of the portfolio [at; bt] at time t. More exactly, Vt gives the portfolio value at the moment right

after the portfolio is rebalanced due to the new price.

Example 5.3.1 (Understanding the Self-financing Condition): The stock prices of IBM and MS

with a portfolio rebalancing are as follows

Price Portfolio

IBM MS IBM MS

t = 0 10 12 8 11

t = 1 15 9 5 16

At t = 1, we see that the old (portfolio’s) value equals new value (sell old buy new)

8 · 15 + 11 · 9 = 219 = V1 = 5 · 15 + 16 · 9

Since we sell 3 (5− 8 = −3) shares of IBM, and use the proceeds to buy 5 (16− 11 = 5) shares

of MS, 3 · 15 = 45 = 5 · 9, this rebalancing is self-financing. The change of portfolio value is

∆V1 = V1 − V0 = 219− (8 · 10 + 11 · 12) = 7, which is caused by the change of assets’ price

∆V1 = 7 = 8 · (15− 10) + 11 · (9− 12)

Observe that at t = 1

219 = 2 · 15 + 21 · 9 = 8 · 15 + 11 · 9

= 11 · 15 + 6 · 9 = 14 · 15 + 1 · 9

surely we can form may portfolios having the same value as V1. Thus, these rebalancings are

self-financing, and there are various possibilities for self-financing trading strategies.

Remark: A self-financing portfolio is a portfolio without any exogenous infusion or withdrawal of

money at each rebalancing (self-financing condition 5.10). A self-financing trading strategy is charac-

terized by Vt+0 = Vt, the values of the portfolio just before and after any transactions are equal, for the

accession of a new asset has to be financed through the sale of some other asset.
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• Let ∆at = at+1 − at, and ∆bt = bt+1 − bt, then

Bt∆bt−1 = −St∆at−1 ∀t

Which states that increasing number of bond is done by selling stocks —— decreasing number of

stock, and vise versa.

• Transactions do not change the value of portfolio

Vt+0 − Vt = St∆at−1 +Bt∆bt−1 = 0

The rebalancing of portfolio do not change the value of the portfolio

• Gain of value process: For

∆Vt = Vt+1 − Vt = (atSt+1 + btBt+1)− (atSt + btBt) = at∆St + bt∆Bt

the value change is caused by the change of assets’ prices, not by the change of the holdings

5.3.3 Derivative Pricing: P World

Derivatives are trading in real world, however, it is more convenient to pricing in Q world. The

binomial algorithm is the key of binomial model, and the linkage between the P world and Q world.

A: Reachable Claim

For financial derivatives, we have a contract function, such that X is a function of price or price

process of some underlying assets. Thus, a claim is a random variableX ∈ IT with finite expectation. A

European option may be exercised only at the expiration date T . On the other hand, an American option

may be exercised at any time prior to and including its maturity date, t 6 T . I like to call European style

derivatives T -claim, for they cease to exist (execute or expire) exactly at maturity time T .

Definition 5.9: A given T -claim X is said to be reachable, or attainable, or marketable, if there exists

a self-financing portfolio ht such that

VT = V (hT ) = X

In that case we say that the portfolio ht is a replicating portfolio of claim X .

The interpretation of T -claim is that the holder of the contract receives the random amount X at

time T . We are most considering claims that are “simple”, in the sense that the payoff of the claim only

depends on the value ST of the stock price at the final time T .

Definition 5.10: A T -claim X is simple if

X = f(ST ) ∈ σ(ST )

where the contract function f(·) is some given real valued function.

It is possible to consider derivatives which depend on the entire path of the price process during the

interval [0, T ]

X = f(S1, S2, · · · , ST ) ∈ IT
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but then the theory for path dependent derivatives becomes a little more complicated. We will investigate

its algorithm a bit later.

B: Binomial Algorithm

It is clear from the construction that the price process of stock at time t can be written as

St,n = S0u
ndt−n t = 1, 2, · · · , T n = 0, 1, 2, · · · , t

where n denotes the number of up-moves that have occurred. Thus each node in the binomial tree can be

represented by a pair (t, n) with n = 0, 1, 2, · · · , t. And

St+1,n = St,nd St+1,n+1 = St,nu

Note that the stock price does not follows binomial distribution, but the number of upward price move-

ments, n, follows binomial distribution.

Figure 5.4: Binomial Algorithm In the BMT (S0, u, d, p, r) market, at each non-leaf node (t, n), there is a

one-step binomial model. Thus, we can work backward to find the price of a simple T -claim.

O
t

n

1 2 3 4 · · · T

1

2

3

4

5

(t, n)

(t+ 1, n+ 1)

(t+ 1, n)

A multi-step binomial tree is depicted in Figure 5.4, by repeating one-step binomial model, we have

the following algorithm.

Algorithm 5.11 (Binomial Algorithm): In the BMT (S0, u, d, p, r) market, any simple T -claim X =

XT = f(ST ) can be replicated using a self-financing portfolio. IfXt,n denotes the value of the portfolio

at the node (t, n), then at each final node

XT,n = f(S0u
ndT−n)

and at earlier nodes, Xt,n can be computed recursively by the scheme

Xt,n = e−r(qXt+1,n+1 + (1− q)Xt+1,n) (5.11)
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Where q = er−d
u−d . The self-financing replicating portfolio is given by

at,n =
Xt+1,n+1 −Xt+1,n

St+1,n+1 − St+1,n
=
Xt+1,n+1 −Xt+1,n

(u− d)St,n
(5.12)

bt,n =
Xt+1,n − at,nSt+1,n

Bt+1
=
Xt+1,nu−Xt+1,n+1d

(u− d)Bt+1

In particular, the arbitrage free price of the claim at t = 0 is given by X0 = X0,0.

Proof. Each non-leaf node (t, n) starts an immediate one-step binomial model BM(St,n, u, d, p, r),

with xu = Xt+1,n+1 and xd = Xt+1,n. The replicating portfolio [at,n; bt,n] produces

at,nSt+1,n + bt,nBt+1 = Xt+1,n

at,nSt+1,n+1 + bt,nBt+1 = Xt+1,n+1

Similar to Equation (5.4), we have Equation (5.12). By Equation (5.6) from Proposition 5.6

Xt,n = at,nSt,n + bt,nBt = e−r(qXt+1,n+1 + (1− q)Xt+1,n) n = 0, 1, 2, · · · , t

Which gives Equation (5.11) for t = T − 1, · · · , 1, 0. Note that we are working backward.

Given any t in {1, 2, · · · , T − 1}, at node (t, n) we see that

at,nSt,n + bt,nBt = Xt,n = at−1,nSt,n + bt−1,nBt n = 0, 1, 2, · · · , t

The first equality reads Xt,n as the value of derivative at node (t, n), while the second equality reads

Xt,n as the payoff at node (t, n) replicated by node (t− 1, n) (if n < t) and (t− 1, n− 1) (if n > 0):

(t, n)

(t+ 1, n+ 1)

(t+ 1, n)

(t− 1, n)

(t− 1, n− 1)

Thus, at time t

atSt + btBt = Xt = at−1St + bt−1Bt

the replicating portfolio is self-financing.

Remark: Let (at, bt) be the self-financing replicating portfolio at time t, then random variables

at, bt ∈ It, and X = aT−1ST + bT−1BT . Because the portfolio strategy is self-financing, we have

a0S0 + b0B0 = X0 = ℘(X) = ℘(aT−1ST + bT−1BT )

Example 5.3.2: In the BMT (S0, u, d, p, r) market, let T = 3, S0 = 80, u = 1.5, d = 0.5, p = 0.6,

and for computational simplicity, r = 0. Find the price of a European call C(S, T,K) on the

underlying stock with K = 80.
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Following algorithm 5.11, first we plot the tree and compute the payoff of the call
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Then we working backward
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27.5

[5/8;−22.5]

2.5

[1/8;−2.5]

52.5

[19/24;−42.5]

0

[0; 0]

5

[1/6;−5]

100

[1;−80]

We have computed prices of the call at each non-leaf node, along with the dynamic replicating portfolios.

C: No-arbitrage and Completeness

An arbitrage portfolio is defined by condition (1.13), with respect to BMT (S0, u, d, p, r) market, an

arbitrage possibility is a self-financing portfolio [at; bt] with value process Vt = atSt + btBt having the

following properties

V0 = 0, VT ⪈ 0

Remark: Why the intermediate step is not mentioned? Cause the portfolio [at; bt] is self-financing.



178 Binomial Model

If there is an arbitrage opportunity at some step t < T , then we can liquidate all risky assets and invest

all the money in bond at time t and carry forward to end time T .

The one-step binomial model is the building block of multi-step binomial model, the condition

for no-arbitrage and completeness of BMT (S0, u, d, p, r) follows straightforward from the results of

BM(S0, u, d, p, r). If condition (5.2) is true, d < er < u, the market BMT (S0, u, d, p, r) is free of

arbitrage. Conversely, if the market is free of arbitrage, the condition (5.2) must be true.

Proposition 5.12: The market BMT (S0, u, d, p, r) is free of arbitrage if and only if d < er < u.

If all T -claims (not only simple claims) can be replicated we say that the market is complete.

Proposition 5.13: The multi-step binomial model BMT (S0, u, d, p, r) is complete, i.e. every T -claim

is attainable (can be replicated by a self-financing portfolio).

Remark: The BMT (S0, u, d, p, r) market is dynamically complete, for the replicating portfolio given

by Equation (5.12), ht = [at; bt] ∈ It, is rebalanced every step. If there is no portfolio rebalancing,

the payoff space of static portfolios is only a subset of T -claims. The payoff space of all T -claims is

L2(Ω,F ,P) (here L2(Ω,F ,P) = L1(Ω,F ,P)), the attainable payoff space is

X = {aTST + bTBT : {[at; bt]}Tt=0 ∈ S}

where S contains all self-financing trading strategies. The completeness of BMT (S0, u, d, p, r) shows

that X = L2(Ω,F ,P). Hence, X is isomorphic to R2T , intermediate tradings can expand the dimension

of marketable payoff space.

If the claim is path-dependent, the Equation (5.11) in Algorithm 5.11 is updated by

Xt(w1w2 · · ·wt) = e−r(qXt+1(w1w2 · · ·wtH) + (1− q)Xt+1(w1w2 · · ·wtL)) (5.13)

for any state (path) beginning with w1w2 · · ·wt. Note that we restore the simplified recombining tree to

a non-recombining tree as in Figure 5.5.

5.3.4 Derivative Pricing: Q World

If we define probability measure Q by

Q(wt+1 = H | It) = Q(Zt+1 = u | It) = q t = 0, 1, · · · , T − 1

then we have

Q(wt+1 = L | It) = Q(Zt+1 = d | It) = 1− q

Consequently, the probability of state w1w2 · · ·wT in Q world3 is

Q(w1w2 · · ·wT ) = qn(1− q)T−n

3In Algorithm 5.11, Q(wt+1 = H |St) = q is read effortlessly from the recombining tree. However, it only works for

simple T -claim X ∈ σ(ST ), for it will not define a probability measure uniquely, see Exercise 5.11. The recombining tree in

Figure 5.4 is only a simplification for computation purpose, it is readily to be restored to a full tree as Figure 5.5 with 2t nodes

at time t. In a full tree, we interpret q plainly as the conditional probability, Q(wt+1 = H | It) = q.
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Figure 5.5: Non-recombining Tree In BMT (S0, u, d, p, r) market, if u or d is path dependent, such that

St(w1 · · ·wt−2HL) ̸= St(w1 · · ·wt−2LH), or if the claim is path-dependent, we need a non-recombining

tree. At time t, there are 2t nodes in a non-recombining tree.

where n =
∑

t 1wt=H is the number of up-moves. For each single step (coin toss)

Q(wt = H) = Q(Zt = u) = q

Q(wt = L) = Q(Zt = d) = 1− q

Comparing with P world

P(w1w2 · · ·wT ) = pn(1− p)T−n

to change from P world to Q world, simply change the probability of the up movement from p to q.

Remark: Probability measure P and Q are equivalent.

• Z1, Z2, · · · , ZT are still i.i.d in Q world (Exercise 5.12).

• If a self-financing portfolio h is an arbitrage opportunity in P world, then it is an arbitrage

opportunity in Q world, and vice versa.

A: Pricing Formula

In Q world, we have

EQ
t (Zt+1) = EQ(Zt+1) = er t = 0, 1, 2, · · · , T − 1

and

EQ
t (St+1) = EQ (St+1 | It) = Ste

r t = 0, 1, 2, · · · , T − 1

Furthermore, if Vt is the value of a self-financing process, then

EQ
t (Vt+1) = erVt (5.14)
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Which is quite similar to Eq (5.9), thus probability measure Q is called risk neutral probability measure,

Q world is a risk-neutral world.

In Q world, Equation (5.13) amounts to

Xt = e−r EQ
t (Xt+1) t = 0, 1, · · · , T − 1 (5.15)

For Xt is the value process of a self-financing replicating portfolio. As a consequence, for any T -claim,

either simple or path-dependent T -claim, we have the following pricing formula.

Theorem 5.14: The arbitrage free price at t of a T -claim X is given by

Xt = e−r(T−t) EQ
t (X)

where Q denotes the risk neutral probability measure. In particular, at t = 0

X0 = e−rT EQ(X) = e−rT
T∑

n=0

(
T

n

)
qn(1− q)T−nf

(
S0u

ndT−n
)

Proof. The market is complete, X can be replicated by a self-financing portfolio. By Eq (5.15)

Xt = e−r EQ
t (Xt+1) = e−r EQ

t (e
−r EQ

t+1(Xt+2))

= e−2r EQ
t (Xt+2) = · · · = e−r(T−t) EQ

t (X)

Let Y denote the number of up-moves in the tree

Y =

T∑
t=1

1 (Zt = u)

then Y has a binomial distribution in Q world, Y ∼ BQ(T, q), and

X = f (ST ) = f
(
S0u

Y dT−Y
)

Thus

X0 = e−rT EQ(X) = e−rT
T∑

n=0

(
T

n

)
qn(1− q)T−nf

(
S0u

ndT−n
)

B: Martingale Representation

Let’s normalized the asset prices by the price of risk-free bond Bt

S:t = St/Bt B:t = Bt/Bt = 1

We say thatBt is the numéraire, the asset in which values of other assets are measured. For convenience,

this price system is called B price system. The price S:t is sometimes called discounted stock price, for

1/Bt = e−rt is a discounted factor (when the risk-free rate is deterministic).

Proposition 5.15: A portfolio ht = [at; bt] is self-financing if and only if ∆V:t = at∆S:t.
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Proof. For

∆V:t − at∆S:t = at+1S:t+1 + bt+1 − (atS:t + bt)− at(S:t+1 − S:t)

= at+1S:t+1 + bt+1 − (atS:t+1 + bt)

= [at+1St+1 + bt+1Bt+1 − (atSt+1 + btBt+1)]/Bt+1

thus condition (5.10) holds if and only if ∆V:t = at∆S:t.

In B price system, S:t is a Q martingale. What’s more, any value process V:t of a self-financing

portfolio is a Q martingale.

Proposition 5.16: In B price system, the value process V:t of a self-financing portfolio is a martingale

under measure Q

EQ(V:t+1 | It) = V:t

The following theorem asserts that the converse is also true: there is a replicating portfolio for each

Q martingale.

Theorem 5.17 (Binomial Representation Theorem): Given measure Q such that S:t is a martingale, for

any Q martingale V:t, there exist a unique predictable process at such that

V:t = V:0 +
t∑

u=1

au−1(S:u − S:u−1) (5.16)

Proof. At time t, the state w1w2 · · ·wt is known. For clarity, we suppress w1w2 · · ·wt and write

V:t+1(w1w2 · · ·wtwt+1) as V:t+1(wt+1). Given V:t and S:t, V:t+1 and S:t+1 can take on one of two

possible values that we denote by {V:t+1(H), V:t+1(L)} and {S:t+1(H), S:t+1(L)} respectively. Since

V:t and S:t are Q martingale (q = Q(wt+1 = H | It))

EQ
t (V:t+1) = qV:t+1(H) + (1− q)V:t+1(L) = V:t

EQ
t (S:t+1) = qS:t+1(H) + (1− q)S:t+1(L) = S:t

Solving both equations for q leads to the relation

q =
V:t − V:t+1(L)

V:t+1(H)− V:t+1(L)
=

S:t − S:t+1(L)

S:t+1(H)− S:t+1(L)
Which in turn implies that

V:t+1(H)− V:t+1(L)

S:t+1(H)− S:t+1(L)
=
V:t+1(L)− V:t
S:t+1(L)− S:t

=
V:t+1(H)− V:t
S:t+1(H)− S:t

≡ at (5.17)

Clearly, at is predictable, at ∈ It. For V:t+1(H), V:t+1(L), S:t+1(H) and S:t+1(L) are known given It
(read the coming remark on V:t+1(H) ∈ It). Equation (5.17) shows that for any wt+1

V:t+1 − V:t = at(S:t+1 − S:t)

and Equation (5.16) is evident.

For uniqueness, if a predictable process At satisfies Equation (5.16), then

V:t+1 − V:t = At(S:t+1 − S:t)
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Accordingly, given w1:t = w1w2 · · ·wt, for any wt+1

At(w1:t) =
V:t+1(w1:twt+1)− V:t(w1:t)

S:t+1(w1:twt+1)− S:t(w1:t)
= at(w1:t)

thus at is uniquely determined.

Remark: V:t+1 ∈ It+1, however V:t+1(H) ∈ It. For at time t, w1:t = w1w2 · · ·wt is given,

V:t+1(H) = V:t+1(w1:tH) ∈ It contains no uncertainty. However, at time t − 1, V:t+1(H) is a random

variable: since wt+1 = H is given but wt is to be resolved, V:t+1(H) takes value in {V:t+1(w1:t−1HH),

V:t+1(w1:t−1LH)}. For example, at time 1, w2 ∈ {H,L} is not resolved yet, if w1 = H , then

V:3(H) ∈ {V:3(HHH), V:3(HLH)} is the restriction of V:3 to the path such that w1 = H and w3 = H .

Thus, V:3(H) is a random variable at time 1, please find out the corresponding two-step sub-tree in Figure

5.5 for an illustration.

Equation (5.17) is consistent with Equation (5.12), also the delta equals

at =
∆V:t
∆S:t

=
V:t+1 − V:t
S:t+1 − S:t

∈ It

In the time period from t to t+ 1, the replicating portfolio holds at shares of stocks and bt = V:t − atS:t
shares of risk-free bonds.

In BMT (S0, u, d, p, r) market, if derivative securities are traded, their price processes V:t must be

martingales under risk-neutral measure. (For VT is reachable and EQ(V:T | It) = V:t)

to do: using martingale to solve BM (like BS) (1) no arbitrage (one-step then multi-step). (2) eq

(2.28) and find q = er−d
u−d , Q(wt+1 = H | It) = q and EQ

t (St+1) = EQ (St+1 | It) = Ste
r (or working

backward, or unconditional probability, or by BM algorithm find state price). (3) pricing function

Vt = e−r EQ
t (Vt+1). (4) complete, define Xt = e−r EQ

t (Xt+1), and BRT.
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§ 5.4 Exercise

5.1 Does Z in Equation (5.1) follow Binomial

distribution? What are E(Z) and var(Z)?

5.2 Prove that if condition (5.2) hold, then

BM(S0, u, d, p, r) is free of arbitrage.

5.3 Show that V0 (h) = ℘(V1 (h)).

5.4 From Eq (5.4), show that

a =
X/B1 −X0

S1/B1 − S0
5.5 Given market BM(S0 = 75, u = 1.2, d =

0.9, p = 1/2, r = ln(1.1)). Suppose that

you can borrow money at rb = ln(1.12),

but the rate for deposits is lower at rd =

ln(1.08). Find the values of your replicating

portfolios for a European put and a call with

maturity at time 1 for strike price K = 75.

5.6 In binomial model, why the price of a deriva-

tive is irrelevant to the real world probabil-

ity?

5.7 Options are redundant most of time, why

trading options?

5.8 Volatility (standard deviation of the log price

difference) and option price: There is a put

maturing at 1 with strike price K = 100

(a) Market BM(S0 = 100, u = 1.16, d =

0.87, p = 1/2, r = ln(1.1)).

(b) Market BM(S0 = 100, u = 1.15, d =

0.85, p = 1/2, r = ln(1.1)).

Find the volatility and option price in each

market, is there a simple monotonic relation-

ship between volatility and put price?

5.9 In the market BM(S0, u, d, p, r), there is a

put maturing at 1 with strike price K, and

S0u > K > S0d. Show that

(a) The price of the put P is increasing

with u and decreasing with d.

(b) The price of the put P is increas-

ing with σ =
√
var(ln(S1/S0)), the

volatility of the stock price (standard

deviation of the log price difference),

if both ud = c and p are constants.

[Hint: dP
dσ = dP

du /
dσ
du > 0 for dP

du =

∂P
∂u + ∂P

∂d
dd
du > 0 and dσ

du > 0]

5.10 In the market BM(S0, u, d, p, r), there is a

call maturing at 1 with strike price K, and

S0u > K > S0d. Show that

(a) The price of the call C is increasing

with u and decreasing with d.

(b) The price of the call C is increas-

ing with σ =
√
var(ln(S1/S0)), the

volatility of the stock price (standard

deviation of the log price difference),

if both ud = c and p are constants.

[Hint: dC
dσ = dC

du /
dσ
du > 0 for dC

du =

∂C
∂u + ∂C

∂d
dd
du > 0 and dσ

du > 0]

5.11 In BM3(S0, u, d, p, r) market, let’s define

q = er−d
u−d and

Q(HHH) = q3

Q(HHL) = q2(1− q)

Q(HLH) = aq2(1− q)

Q(HLL) = q(1− q)(1− aq)

Q(LHH) = (2− a)q2(1− q)

Q(LHL) = q(1− q)(1− (2− a)q)

Q(LLH) = q(1− q)2

Q(LLL) = (1− q)3

If Q is a probability measure, show that

(max (0, 2− 1/q) < 1 < min(1/q, 2))

(a) max (0, 2− 1/q) 6 a 6 min(1/q, 2)

(b) Q(wt+1 = H |St) = q for t = 0, 1, 2
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§ 5.5 Appendix

some

5.5.1 Stochastic Processes

When t represents time, we can interpret f(t, ωi) and f(t, ωj) as two different trajectories that depend

on different states of the world. For example, in Figure 5.3, ω3 = LHLmarks the path of down-up-down,

the collection of paths {ω1, ω2, · · · , ω8} is the sample space Ω. Hence, if ω represents the underlying

randomness, the function f(t, ω) can be called a random function. Another name for random functions

is stochastic processes. With stochastic processes, t will represent time, and we often limit our attention

to the set t > 0.

Note this fundamental point.
:::::::::::
Randomness

:::
of

:
a
::::::::::
stochastic

:::::::
process

::
is

::
in

::::::
terms

::
of

::::
the

:::::::::
trajectory

::
as

::
a

::::::
whole,

::::::
rather

::::
than

::
a

:::::::::
particular

:::::
value

::
at
::
a
:::::::
specific

::::::
point

::
in

::::
time. In other words, the random drawing is

done from a collection of trajectories Ω. Choosing the state of the world, ω ∈ Ω, determines the complete

trajectory.

The price of stock at time t will be denoted by S(t).

S(t) : Ω→ (0,∞)

We shall write S(t, ω) to denote the price at time t if the market follows scenario ω ∈ Ω.

Remark: at time t, ω is not fully revealed, infinite path into the future.

Chatting: fate as ‘ming’, and lot/luck as ‘yun’. fate is random variable, and lot is realization. So we

can change fate, we can change lot. ‘ming yun’: kismet, destiny, ‘ming’ life, ‘yun’ luck, random

variable vs realization

A predictable (previsible) process is one which only depends on information available up to the

current time, but not on any information in the future. Formally, Xt ∈ It.

Remark: most textbook define the discrete previsible process by Xt ∈ It−1, a predictable process is

“known one step ahead in time”. They use Xt in the place of my Xt−1.

In the BMT (S0, u, d, p, r) market, ω = w1w2 · · ·wT , the stock price process St is predictable,

St(w1w2 · · ·wT ) is resolved by the first t coin tosses w1:t = w1w2 · · ·wt, St(w1w2 · · ·wT ) is not

dependent on wt+1:T = wt+1wt+2 · · ·wT . For example

S2(LH) = S2(LHH) = S2(LHLLL)

Conversely, knowing the value of St at time t gives no hints of wt+1:T on the path of w1:T .

5.5.2 Martingale

A martingale is the probabilistic extension of a flat line.

A martingale is a stochastic process for which, at a particular time, the expectation of the future value

is equal to the present observed value even given knowledge of full past history.
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If random process Yt ∈ It, and for all t and u with t < u the following relation holds:

Et(Yu) = E(Yu | It) = Yt

then we say that stochastic process Y (t) is an (It)-martingale.

It is important to note that the property of being a martingale involves both the filtration and the

probability measure (with respect to which the expectations are taken). It is possible that Y could be a

martingale with respect to one measure but not another one;

Remark: It information up to t, called filtration, The information generated by Xt on the interval

[0, t], Xs ∈ It = IXt for any s 6 t.
Doob’s Optional Stopping Theorem, which says that the expectation of a martingale is constant, even

if we stop the martingale at a random time (so long as that random time does not look into the future).

In mathematical finance and economics, martingales are crucial for pricing models. For example, if

we model a financial asset as a random process, we demand pricing rules (measures) under which the

asset is a martingale. The martingality of an asset is equivalent to not being able to conduct arbitrage

through trades in that asset.

5.5.3 Proof

Let Lp(Ω,F ,P) be the collection of random variables such that E(|X|p) < ∞ for any random

variable X and real number p > 1. Since payoffs must be finite, we limit our discussion of random

variables with finite expectations. In binomial model, it is clear that L1(Ω,F ,P) = L2(Ω,F ,P), thus

both are Hilbert spaces.

A: Free of Arbitrage

Theorem 5.2: BM(S0, u, d, p, r) is free of arbitrage iff d < er < u.

Proof: free of arbitrage =⇒ (5.2). To show that absence of arbitrage implies (5.2), we assume that

(5.2) does in fact not hold, and then we show that this implies an arbitrage opportunity.

If (5.2) fails, either er > u or er 6 d. Let us thus assume that one of the inequalities in (5.2) does

not hold, so that we have, say, the inequality er > u > d, we have

er − Z ⪈ 0

So it is always more profitable to invest in the bond than in the stock. An arbitrage strategy is now formed

by the portfolio h = [−1;S0], i.e. we sell the stock short and invest all the money in the bond. For this

portfolio we obviously have V0 = −1 · S0 + S0 · 1 = 0

V1 = −1 · S0Z + S0 · er = S0 (e
r − Z) ⪈ 0

the case er 6 d < u is treated similarly.

What about “(5.2) =⇒ absence of arbitrage”?
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Otherwise, we can find an arbitrage portfolio [a; b]

V0 = aS0 + b = 0

V1 = aS0Z + ber ⪈ 0

which means b = −aS0 and

V1 = aS0 (Z − er) ⪈ 0

Note that a ̸= 0, otherwise V1 = 0. Therefore, either a < 0 or a > 0. Assume now that a > 0, then

V1 ⪈ 0 =⇒ V1 > 0 =⇒ Z > er =⇒ d > er

contradict with d < er. Similarly, a < 0 leads to contradiction.

Discuss: if condition (5.2) is true, define q = er−d
u−d , then X0 = er EQ(X) for B and S, it is a pricing

function, and rule out arbitrage.

B: Pricing Formula

Theorem 5.7: X0 = er EQ(X), the pricing function takes a model specific form

free of arbitrage =⇒ (5.2), define q = er−d
u−d and 1−q to be measure Q. By Eq (5.6),X0 = er EQ(X)

⇐= , for any V1 ⪈ 0, EQ(V1) > 0, thus V0 = er EQ(V1) > 0, rule out arbitrage opportunity

C: No-arbitrage and Completeness

Proposition 5.12: BMT (S0, u, d, p, r) is free of arbitrage if and only if d < er < u.

=⇒ : each node is one-step tree, interpret q as probability, Vt = e−r EQ
t (Vt+1) =⇒ V0 =

e−rT EQ(VT ), any VT ⪈ 0, V0 > 0

⇐= : otherwise d < er < u not hold, find an arbitrage in one-step model, and convert to risk-free

asset and hold to T .

Proposition 5.13: BMT (S0, u, d, p, r) is complete

Proof: one-step is complete, condition on t = T − 1, T − 2, · · · , 1, 0, working backward on a

non-recombining tree

D: Q World

If we define probability measure Q by

Q(wt+1 = H | It) = q t = 0, 1, · · · , T − 1

then

Q(w1w2 · · ·wT ) = qn(1− q)T−n

In the following proof, the notation Q(w1w2 · · ·wT ) is somewhat misused. It is a shorthand, as an

example, let T = 3, and w1w2w3 = HLH , then Q(w1w2w3) refers to Q(HLH) or Q(w1 = H,w2 =

L,w3 = H), and Q(w2 |w1) is Q(w2 = L |w1 = H).
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Proof: by the Proposition 3.14, {wt = H} ⊥ It−1 and {wt = L} ⊥ It−1, thus

Q(w1w2 · · ·wT ) = Q(w1)Q(w2 |w1) · · ·Q(wT |w1w2 · · ·wT−1) = Q(w1)Q(w2) · · ·Q(wT )
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