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§ 7.1 General Properties of Option Price

sorry, in draft state

factors affecting the price of a stock option

7.1.1 Effect of Variables on Option Pricing

See Hull 10e, p232 Table 11.1

The following variables may affect the price of a stock option: Let t be the current time, and T be the

expiration date.

1. The strike price, K

2. The time to expiration, T − t
3. The current stock price, St
4. The annualized expected return on stock in a short period, µ (percentage drift rate)

5. The volatility of the stock price per year, σ (percentage volatility)

6. The risk-free interest rate, r

7. The dividends that are expected to be paid.

We assume that µ and σ > 0 are constant, and r > 0 is constant and the same for all maturities.

Remark: more exactly, the expected return µ is a drift parameter, it is an annualized log expected

return

µ =
ln(E(ST /St))

T − t
Recall that if ln(ST /St) ∼ N

((
µ− σ2

2

)
(T − t) , σ2(T − t)

)
, then the annualized expected log return

is
E(ln(ST /St))

T − t
= µ− σ2

2

However, we have E(ST /St) = eµ(T−t).

Remark: Jensen’s inequality shows that ln(E(ST /St)) > E(ln(ST /St))

In an infinitesimal time interval ∆t

E

(
∆St
St

)
= eµ∆t − 1 = µ∆t

var

(
∆St
St

)
=
(
eσ

2∆t − 1
)
e2(µ−σ2/2)∆t+σ2∆t = σ2∆t

in a very short period of time, the mean return is µ∆t. Note that approximately ∆St
St
∼ N(µ∆t, σ2∆t)

(Hull 10e, p320, Eq15.1) is not true, but ∆St
St

is shifted lognormal!

∆St
St

=
St+∆t

St
− 1 = exp

(
σ∆Wt +

(
µ− σ2

2

)
∆t

)
− 1

∆St
St

> −1, the stock is a limited liablity.
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A: Strike Price

Let Ct be the price of a European call, show that Ct is a decreasing, convex function of K. And for

h > 0, Ct(S, T,K)− Ct(S, T,K + h) 6 e−r(T−t)h (We do not assume the BS market)

Let Ct(K) = Ct(S, T,K) then

CT (K) = (ST −K)+

and Ct = ℘t,T (CT ), where the pricing function is a positive linear function.

Decreasing: CT (K) is a decreasing function of K (a > b =⇒ a+ > b+). If K1 > K2, then

CT (K1) 6 CT (K2) and

Ct(K1) = ℘(CT (K1)) 6 ℘(CT (K2)) = Ct(K2)

Convex: PT (K) is a convex function of K (Lemma 7.14). Let 0 6 l 6 1, K = lK1 + (1− l)K2, then

lCT (K1) + (1− l)CT (K2) > CT (K)

and

Ct(K) = ℘(CT (K)) 6 ℘(lCT (K1) + (1− l)CT (K2)) = lCt(K1) + (1− l)Ct(K2)

By Triangle Inequality (a = ST − (K + h), b = h > 0)

CT (K)− CT (K + h) 6 h+ = h

or by a > b =⇒ a+ − b+ 6 a− b

CT (K)− CT (K + h) 6 (ST −K)− (ST − (K + h)) = h

thus

Ct(K)− Ct(K + h) 6 ℘t,T (h) = e−r(T−t)h

Let Pt be the price of a European put, show that Pt is an increasing, convex function of K. And for

h > 0, Pt(S, T,K + h)− Pt(S, T,K) 6 e−r(T−t)h (We do not assume the BS market)

See Exercise 7.8.

B: Put-call Parity

When the prices of European put and call options have the same strike price and time to maturity,

there is an important relationship

Pt + St = Ct +Ke−r(T−t)

A European call is a portfolio of a corresponding European put and a forward

Only need linearity, The law of linear combination asserts that the pricing function is linear, do not

need no-arbitrage assumption. The law of one price and law of linear combination result in ℘(0) = 0,

which rules out immediate arbitrage opportunities.

Put-call parity holds only for European options. However, it is possible to derive some results for

American option prices
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7.1.2 Upper and Lower Bounds for Option Prices

Assume 0 6 r <∞, then 0 < ℘(1) = e−r 6 1

Upper and lower bounds for European call options

St > Ct > (St −Ke−r(T−t))+

for European put options

Ke−r(T−t) > Pt > (Ke−r(T−t) − St)+

Proof. For any real number a, b, and c

max (a, b) > a max (a, b) > b

and

c > a, c > 0 ⇐⇒ c > a+

and a > 0, b > 0 =⇒ (a− b)+ < a

XEuropean call: For ST > 0 and K > 0, CT = (ST −K)+ < ST , thus

Ct = ℘(CT ) < ℘(ST ) = St

CT = (ST − K)+, then CT > 0 and CT > ST − K, by the positivity of pricing function

Ct = ℘(CT ) > 0 and ℘(CT ) > ℘(ST −K) = St −Ke−r(T−t), thus Ct > (St −Ke−r(T−t))+.

XEuropean puts: For ST > 0 and K > 0, PT = (K − ST )+ < K, thus

Pt = ℘(PT ) < ℘(K) = Ke−r(T−t)

PT = (K − ST )
+, then PT > 0 and PT > K − ST , by the positivity of pricing function

Pt = ℘(PT ) > 0 and ℘(PT ) > ℘(K − ST ) = Ke−r(T−t) − St, thus Pt > (Ke−r(T−t) − St)+.

Remark: By parity Pt = Ct − (St −Ke−r(T−t)) > 0 and Ct = Pt − (Ke−r(T−t) − St) > 0 means

Ct > St −Ke−r(T−t) and Pt > Ke−r(T−t) − St.
Since CT = (ST −K)+ ⪈ 0, Ct = ℘(CT ) > 0. Similarly, Pt > 0.

0 < Ct < St 0 < Pt < K

When r > 0, since Ct > St −Ke−r(T−t), there is Ct > St −K.

7.1.3 American Options

No matter what happens, an American call option can never be worth more than the stock. Otherwise,

an arbitrageur could easily make a riskless profit by buying the stock and selling the call option. An

American put option gives the holder the right to sell one share of a stock for K. Similarly, no matter

how low the stock price becomes, the option can never be worth more thanK. We have the upper bounds

(the value of a right to obtain an asset can not exceed the asset itself)

CA(t) < St PA(t) < K
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Proof. CA(t) < St: At time t, hold portfolio Xt = St − CA(t). If CA is exercised at time u < T ,

Xu = Su − (Su − K) = K, we hold Ke−ru unit bonds to time T (self-financing), then XT =

Ker(T−u) > 0. At time T , whether it is exercised or not, XT = ST − (ST −K)+ = min(K,ST ) > 0.

Thus St − CA(t) = Xt = ℘(XT ) > 0, that is, CA(t) < St. One can argue by arbitrage too.

PA(t) < K: At time t, hold portfolio Xt = K − PA(t). If PA is exercised at time u < T ,

Xu = Ker(u−t) − (K − Su) = Su +K(er(u−t) − 1), we hold (Su +K(er(u−t) − 1))e−ru unit bonds

to time T (self-financing), then XT = (Su + K(er(u−t) − 1))er(T−u) > 0. At time T , whether it is

exercised or not, XT = K − (K − ST )+ = min(K,ST ) > 0. Thus K − PA(t) = Xt = ℘(XT ) > 0,

that is, PA(t) < K

An American option gives at least the same rights as the corresponding European option. Although

may not be wise, exercising and holding to maturity are the two easy actions among all the trading

strategies at time t:

• CA(t) > max(St −K,CE(t)), thus CA(t) > CE(t) and CA(t) > St −K
• PA(t) > max(K − St, PE(t)), thus PA(t) > PE(t) and PA(t) > K − St
Remark: The price of an American option must be not less than the values of actions can be taken now.

Otherwise, that we long the option and take the action properly will result in an arbitrage opportunity. For

example, if CA(t) < St −K, we long the call and exercise it immediately, the immediate profit will be

St−K −CA(t) > 0 without future obligation. If PA(t) < PE(t), long PA and short PE and hold PA to

maturity, Xt = PA(t)− PE(t) < 0, and XT = PA(T )− PE(T ) = 0, there is an arbitrage opportunity.

The price of an American option equals the highest value of actions can be taken now. One of the

partition of action sets is to exercise or not, thus CA(t) = max(St − K,CA(t + 0)) (the second item

CA(t+ 0) means that it is not exercised at time t).

A: Early Exercise

It shows that it is never optimal to exercise an American call option on a non-dividend-paying stock

prior to the option’s expiration (if r > 0), but that under some circumstances the early exercise of an

American put option on such a stock is optimal. When there are dividends, it can be optimal to exercise

either calls or puts early.

Since r > 0

CA(t) > CE(t) > (St −Ke−r(T−t))+ > St −Ke−r(T−t) > St −K

the investor is better off selling the option than exercising it. Thus

CA(t) = CE(t)

for an American call option on a non-dividend-paying stock.

There are two reasons an American call on a non-dividend-paying stock should not be exercised early:

One relates to the insurance that it provides against the stock price falling below the strike price (pay
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less). The other reason concerns the time value of money. From the perspective of the option holder, the

later the strike price is paid out the better (pay later).

If r = 0, there is PA(t) = PE(t).

Since PA(T ) = (K − ST )+ ⪈ K − ST . If early exercise at time u < T , the payoff is

K − Su = ℘(K − ST ) < ℘(PA(T ))

Which means that it is better not to exercise early. Thus PA(t) = PE(t) if r = 0.

Remark: When the interest rates are not deterministic, even if Rt,T = 0, we do not have Ru,T = 0,

then K − St = ℘t,T (K − ST ), but K − Su ̸= ℘u,T (K − ST ) = e−(T−u)Ru,TK − Su.

B: Put-call Inequality

The prices of American put and call options with the same strike price X and expiry time T on a

stock that pays no dividends satisfy

S(t)−Ke−r(T−t) > CA(t)− PA(t) > S(t)−K

Proof. The left inequality: by CA = CE , and PA > PE

PA(t) + S(t) > PE(t) + S(t) PA > PE

= CE(t) +Ke−r(T−t) parity

= CA(t) +Ke−r(T−t) CA = CE

The right inequality: At time t, long CA +Ke−rt · ert (one American call andKe−rt unit bonds),

short PA + S.

• If the put option is exercised early at time t < u < T

Xu = CA(u) +Ker(u−t) − (K − Su + Su)

= CA(u) +Ker(u−t) −K > 0 CA(u) = CE(u) > 0

We sell CA and convert all proceeds into bonds (self-financing), then XT = Xue
r(T−u) > 0.

• If the put is not early exercised (the put option is exercised at time T , or not exercised at all), we

find that at time T

XT = CA(T ) +Ker(T−t) − [PA(T ) + S(T )]

= (ST −K)+ +Ker(T−t) −
[
(K − ST )+ + ST

]
= Ker(T−t) −K > 0

Thus, in all circumstances, there always beX(t) = ℘(XT ) > 0, that isCA(t)−PA(t) > S(t)−K.

Remark: possibility of equality

• If the put option is exercised at time T , or not exercised at all, there is CA(T ) = CE(T ) and

PA(T ) = PE(T ), we have CA(T )− PA(T ) = S(T )−K.
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• When r is very small CA(t)− PA(t) ≈ S(t)−K, it is approximately equal.

7.1.4 Effect of Dividends

to do: effect of dividends
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§ 7.2 Stock Price Process

in a deterministic world, then uncertainty is introduced

7.2.1 Deterministic Model

Suppose percentage change of stock price is proportional to small time span
∆St
St

=
St+∆t − St

St
= µ∆t =⇒ ∆St

∆t
= µSt

in the limit as ∆t→ 0
dSt
dt

= µSt

so that

St = S0e
µt

where S0 and St are the stock price at time zero and time t. The stock price grows at a continuously

compounded rate of µ. This is like the risk-free bond Bt!

Remark

• St is function of t, note that we also denote it by S (t)

• taking logarithm

ln (St) = ln (S0) + µt

the log price grows linearly

7.2.2 Geometric Brownian Motion

If Z ∼ N(0, 1), we define

S1 = S0e
µecZ =⇒ ln (S1) = ln (S0) + µ+ cZ

where c is a constant to be determined. This model is more realistic, since it contains random factors.

However, the term ecZ produces the other source of drift. We wish to keep all the drift in the eµ factor.

Note that

E
(
ecZ
)
= ec

2/2 =⇒ E(ecZ−c2/2) = E
(
ecZ
)
e−c2/2 = 1

we can normalize our model to correct for this unwanted drift

ln (S1) = ln (S0) + µ+ cZ − c2/2

Suppose each period has length ∆t = h, let us fix a time t = Nh for some integer N , denote

Sn = S (nh) n = 0, 1, 2, · · · , N

Let {Zn} denote a sequence of i.i.d standard normal random variables with mean 0 and variance 1. We

set

ln (Sn) = ln (Sn−1) + µh+ cZn − c2/2 (7.1)

where c is a constant and c2/2 is to correct the drift. Then we have

ln (Sn) = ln (S0) + µnh+ cRn − nc2/2
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where

Rn = Z1 + Z2 + · · ·+ Zn ∼ N(0, n)

The stock price

Sn = S0e
nµhecRne−nc2/2

Remark

• S0 is simply the initial price of the stock (t = 0)

• enµh is the drift or deterministic component

• ecRn is random factor, Rn ∼ N(0, n)

• e−nc2/2 is correction factor

Remind: If {Xn} is a sequence of iid N
(
µ, σ2

)
, then X1 +X2 + · · ·+Xn ∼ N

(
nµ, nσ2

)
We choose a relationship between c and N so that

var (cRN ) = σ2t

thus

σ2t = var (cRN ) = c2var (RN ) = c2N =⇒ c = σ
√
h

Because

SN = S (Nh) = S (t) = St = S0e
µNhecRN e−Nc2/2

let’s denote

Wt ≡
1

σ
cRN =

√
hRN =

√
∆tRN ∼ N(0, t)

we have

St = eµtS0e
σWte−σ2t/2 = S0 exp

(
σWt +

(
µ− σ2

2

)
t

)
which is a lognormal model, call geometric Brownian motion (GBM).

Remark: Let

Wn =
c

σ
Rn =

√
∆tRn

we have (forward difference)

∆Wn =Wn+1 −Wn = Zn+1

√
∆t

symbolically in stochastic calculus

dW = ϵ
√
dt ϵ ∼ N(0, 1)

and

(dW )2 = ϵ2dt→ dt

by E
(
ϵ2
)
= 1, E

(
ϵ4
)
= 3

E((dW )2) = dt var((dW )2) = E((dW )4)− [E((dW )2)]2 = 2 · (dt)2 → 0

The variance of (∆W )2 = ϵ2∆t is therefore too small for it to have a stochastic component. As a result,

(dW )2 = dt, we can treat ϵ2∆t as nonstochastic and equal to its expected value, ∆t, as ∆t tends to zero.

Note again that all the reasoning above has been purely motivational.
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Try (o(∆t) means lim∆t→0
o(∆t)
∆t = 0)

∆St
St

=
St+∆t − St

St
=
St+∆t

St
− 1 =

S0 exp
(
σWt+∆t +

(
µ− σ2

2

)
(t+∆t)

)
S0 exp

(
σWt +

(
µ− σ2

2

)
t
) − 1

= exp

(
σ∆Wt +

(
µ− σ2

2

)
∆t

)
− 1

= 1 + σ∆Wt +

(
µ− σ2

2

)
∆t+

1

2

(
σ∆Wt +

(
µ− σ2

2

)
∆t

)2

+ o(∆t)− 1

= σ∆Wt +

(
µ− σ2

2

)
∆t+

1

2
σ2(∆Wt)

2 +

(
µ− σ2

2

)
σ∆Wt∆t+ o(∆t)

= σ∆Wt +

(
µ− σ2

2

)
∆t+

1

2
σ2∆t+

(
µ− σ2

2

)
σϵ · (∆t)3/2 + o(∆t)

= µ∆t+ σ∆Wt + o(∆t)

or
dS

S
= µdt+ σdW

rules: like i2 = −1, we write (dW )2 = dt

When randomness is introduced, the rules are changing, the rules working well in deterministic world

fail in a random world. A bike need a rack to stand up, however, when riding, we do not need the rack.

Remark: the traditional (deterministic) limit can not be use, for ϵt ∼ N(0, 1) is random

lim
∆t→0

∆W

∆t
= lim

∆t→0

ϵt
√
∆t

∆t
= lim

∆t→0

ϵt√
∆t

=∞ a.s.

To realize the above argument on a computer take e.g. ∆t = 10−20. Then ∆W (t) /∆t = ϵt/
√
∆t =

1010ϵt, which is very large in absolute value with overwhelming probability.

Question: Why forward difference?

math consideration, to be independent of past

economic meaning, future innovation (information)

If using backward difference, ∆Wt = Wt − Wt−∆t, at time t, ∆Wt is known, there is nothing

random.

Equation (7.1) gives

ln (Sn+1) = ln (Sn) + µh+ cZn+1 − c2/2 = ln (Sn) + µ∆t+ σ∆Wn − σ2∆t/2

or

d ln(S) = (µ− σ2/2)dt+ σdW

Note that d ln(S) ̸= dS
S
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7.2.3 Binomial Model to Geometric Brownian Motion

We divide a time period from 0 to t into N subintervals, each has length h = t/N . Let SN =

S0Z1Z2 · · ·ZN with (We are interest in Q world for derivative pricing)

Q(Zn = u) = q Q(Zn = d) = 1− q

Note that u, d and q will depend on N (or sub-period length h).

Remark: Z1, Z2, · · · , ZN are i.i.d, and we can work in P world similarly.

A: Log Price

To match mean and variance

ln(Zn) = ln(Sn/Sn−1)←→ NQ(γh, σ2h)

with γ = r − σ2

2 (where r is annual rate, not period rate), let

q ln(u) + (1− q) ln(d) = γh

q(1− q)(ln(u)− ln(d))2 = σ2h

For simplicity (symmetry), assume that ud = 1, then

q =
γh− ln(d)

ln(u)− ln(d)

and

ln(u) =
√
γ2h2 + σ2h ln(d) = − ln(u)

We see that

q =
γh− ln(d)

ln(u)− ln(d)
=
γh+ ln(u)

2 ln(u)
=
γ

2

√
h

γ2h+ σ2
+

1

2

Define

Yn = 1Zn=u − 1Zn=d =

 1 q

−1 1− q

If U is the number of times the stock goes up by time t andD is the number of times the stock price goes

down by time t then obviously, we must have

U −D =
N∑

n=1

Yn

then

St = SN = S0u
UdD = S0u

U−D = S0 exp

(√
γ2h+ σ2 ·

√
h

N∑
n=1

Yn

)
It can be shown that (see the appendix)

lim
h→0

√
γ2h+ σ2 ·

√
h

N∑
n=1

Yn ∼ NQ(γt, σ2t) (7.2)

thus

St = S0 exp

((
r − σ2

2

)
t+ σWt

)
Wt ∼ NQ (0, t)
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B: Discussion

safe to skip this subsection

An alternative way to find the q, u and d is by matching

Zn = Sn/Sn−1 ∼ LNQ((r − σ2/2)h, σ2h)

with

qu+ (1− q)d = erh

q(1− q)(u− d)2 = (eσ
2h − 1)e2rh

and again assume that ud = 1, then [find q from (1), substitute in (2) and simplify]

u+
1

u
= e(r+σ2)h + e−rh ≡ c

which gives

u =
c+
√
c2 − 4

2
d =

1

u
=
c−
√
c2 − 4

2

and

q =
erh − d
u− d

=
erh − c/2√
c2 − 4

+
1

2
=

2erh − (e(r+σ2)h + e−rh)

2
√
(e(r+σ2)h + e−rh)2 − 4

+
1

2
(7.3)

It can be shown that

lim
N→∞

q =
1

2

and (Exercise)

lim
N→∞

N1/2(2q − 1) = t1/2
γ

σ

However, the limit distribution of

St = S0u
U−D = S0

(
c+
√
c2 − 4

2

)∑N
n=1 Yn

is hard to work out.

How about

ln(St/S0) = ln

(
c+
√
c2 − 4

2

)
N∑

n=1

Yn

In most applications, we set

u = eσ
√
h d = e−σ

√
h (7.4)

and q = erh−d
u−d , then

St = S0u
U−D = S0e

σ
√
h
∑N

n=1 Yn

It can be shown that

lim
h→0

σ
√
h

N∑
n=1

Yn ∼ NQ(γt, σ2t) (7.5)

thus St/S0 ∼ LNQ(γt, σ2t).

Remark: In simple method, we approximate u = c+
√
c2−4
2 by u = eσ

√
h, the variance are not exact

match in one period (but exact in the limit)

q(1− q)(u− d)2 = (eσ
2h − 1)e2rh + o(h2)
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for (by small o)

q(1− q)(u− d)2 − (eσ
2h − 1)e2rh

=
erh − d
u− d

(
1− erh − d

u− d

)
(u− d)2 − (eσ

2h − 1)e2rh

= (erh − d)(u− erh)− eσ2h+2rh + e2rh

= ehr(eσ
√
h + e−σ

√
h)− 1− eσ2h+2rh

= (1 + hr + o(h2)) · (2 + σ2h+ o(h2))− 1− (1 + σ2h+ 2rh+ o(h2))

= o(h2)

When h is small,
√
h much larger than h

Remark: fixed q = 1/2, by

γh =
1

2
(ln(u) + ln(d)) σ2h =

1

4
(ln(u)− ln(d))2

then ln(u) = hγ +
√
hσ, ln(d) = hγ −

√
hσ, the problem is

EQ(Yn) = 2q − 1 = 0

not able to generate the drift term
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§ 7.3 Black-Scholes Model

The Black-Scholes model has two assets, a risk-free bond with price process Bt and a (risky) stock

with price process St defined as

Bt = ert

St = S0 exp

((
µ− σ2

2

)
t+ σWt

)
Where 0 6 t 6 T , Wt is a Wiener process. The (percentage) drift µ, the (percentage) volatility σ > 0,

the continuously compounded risk-free rate r > 0, and the initial stock price S0 > 0 are constants. The

prices process of stock St is called a geometric Brownian motion. Modelling by stochastic calculus, the

price dynamics are

Bt = B0 +

∫ t

0
rBu du B0 = 1

St = S0 +

∫ t

0
µSu du+

∫ t

0
σSu dWu

or symbolically, in differential form
dBt

Bt
= rdt

dSt
St

= µdt+ σdWt

The market is driven by a Wiener process, we define the sample space naturally as

Ω = {w(t) : w ∈ C[0, T ]}

Where C[0, T ] is the collection of continuous functions define on interval [0, T ], thus each continuous

function is an elementary event. Let It be the information available up to time t (the information generated

by Ws on the interval [0, t], I(Wt) = I(St) and I0 contains only sets of measure one and sets of measure

zero), then the event space is F = IT . For brevity, the market setting of Black-Scholes model is denoted

by BST (r, µ, σ).

7.3.1 Pricing Function: Q World

Let λ = µ−r
σ and

G = exp

(
−
∫ T

0
λ(u) dW (u)− 1

2

∫ T

0
λ2(u) du

)
then by Girsanov’s Theorem, probability measure Q given by dQ = GdP is equivalent to P , and

Z(t) =W (t) +

∫ t

0
λ(u) du

is a Wiener process under Q.

If we normalized the asset prices by the price of risk-free bond Bt, we define

S:t = St/Bt B:t = Bt/Bt = 1

We say thatBt is the numéraire, the asset in which values of other assets are measured. For convenience,

this price system is called B price system. By Itô formula, there is

dS:t = σS:tdZt



Black-Scholes Model 221

Which means that S:t is a Q martingale. In more details, for any t and u > t

EQ
t (S:u) = S:t 0 6 t 6 u 6 T

When 0 6 t 6 u 6 T , we have

St = Bt E
Q
t (Su/Bu)

Bt = Bt E
Q
t (Bu/Bu)

We see that Vt = Bt E
Q
t (Vu/Bu) works for all primary assets, thus

Vt = ℘t,u(Vu) ≡ Bt E
Q
t (Vu/Bu) = e−r(u−t) EQ

t (Vu) (7.6)

is a pricing function in the BST (r, µ, σ) market.

7.3.2 No-arbitrage and Completeness

Let us first specify our vocabulary in the BST (r, µ, σ) market. Let

0 = t0 < t1 < · · · < tN−1 < tN = T

be a partition of [0, T ]. Think of t0, t1, · · · , tN−1 as the trading dates, and think of

[ati ; bti ] ∈ Iti i = 0, 1, 2, · · · , N − 1

as the position (number of shares) taken in stock and bond at each trading date and held to the next trading

date. If each rebalancing is self-financing, then

ati−1Sti + bti−1Bti = atiSti + btiBti

and

∆Vti = Vti+1 − Vti = ati+1Sti+1 + bti+1Bti+1 − [atiSti + btiBti ]

= atiSti+1 + btiBti+1 − [atiSti + btiBti ] = ati∆Sti + bti∆Bti

for i = 1, 2, · · · , N − 1. If the mesh of partition go to zero (max(ti+1 − ti) → 0), in the Itô sense, we

have the self-financing condition

dVt = atdSt + btdBt (7.7)

where ∫ T

0
E(a2(u) + b2(u)) du <∞ (7.8)

Condition (7.8) is a technical requirement, which makes sure that the corresponding Itô integral is a

martingale, and rules out possible doubling strategies for a sure win.

Definition 7.1: In the BST (r, µ, σ) market, a self-financing trading strategy (portfolio strategy) is a

stochastic process

ht = [at; bt] ∈ It t ∈ [0, T ]

satisfy condition (7.7) and (7.8). The value process of portfolio ht is

Vt = V (ht) = atSt + btBt
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The portfolio we buy at time t is allowed to depend on all information up to time t, by observing the

evolution of the stock price. We are, however, not allowed to look into the future. Such trading strategy

is said to be adapted or predictable.

Proposition 7.2: A stochastic process {ht = [at; bt]} is a self-financing portfolio strategy if and only if

dV:t = atdS:t.

Proof. For Vt = V (ht) = atSt + btBt and

dS:t = d

(
St
Bt

)
=

1

Bt
(dSt − Strdt)

dV:t = d

(
Vt
Bt

)
=

1

Bt
(dVt − Vtrdt)

We have

(dV:t − atdS:t)Bt = (dVt − Vtrdt)− at(dSt − Strdt)

= dVt − atdSt − (Vt − atSt)rdt

= dVt − (atdSt + btdBt)

Thus dV:t = atdS:t ⇐⇒ dVt = atdSt + btdBt.

An arbitrage portfolio is defined by condition (1.13). With respect toBST (r, µ, σ)market, an arbitrage

possibility is a self-financing process Vt = V (ht) with the following properties

V0 = 0, VT ⪈ 0

In BST (r, µ, σ) market, given r, the parameters µ and σ have three cases: (1) σ > 0, (2) σ = 0

and µ = r, and (3) σ = 0 and µ ̸= r. The following Proposition answers why we assume σ > 0 in the

BST (r, µ, σ) market.

Proposition 7.3: In BST (r, µ, σ) market, the market is free of arbitrage if and only if the following

condition holds: either σ > 0, or σ = 0 with µ = r.

Proof. =⇒ : If σ = 0 with µ = r, then St = Bt, there is only one risk-free asset, Vt = ℘t,u(Vu) =

e−r(u−t)Vu; If σ > 0, the pricing formula is (7.6), Vt = ℘t,u(Vu) = e−r(u−t) EQ
t (Vu). Thus, there

always exits a positive linear pricing function Vt = ℘t,u(Vu). For any self-financing process Vt with

VT ⪈ 0, V0 = ℘0,T (VT ) > 0, the market is free of arbitrage.

⇐= : otherwise, the market is free of arbitrage and σ = 0 with µ ̸= r, then the stock is riskless,

St = S0e
µt, we have

S0 = ℘(ST ) = ℘(S0e
µT ) = S0e

µT℘(1) = S0e
(µ−r)T

which requires µ = r, contradiction with µ ̸= r.

Since the primary assets Bt and St are in L2, the payoff space of self-financing portfolio strategies

must be in L2T (Ω,F ,P). If all T -claims (X ∈ IT with finite variance, European style with payoff X at
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time T ) can be replicated by a self-financing portfolio strategy we say that the market is complete.

Proposition 7.4: The BST (r, µ, σ) market is complete, i.e. every T -claim can be replicated by a

self-financing portfolio strategy.

Proof. Given T -claim X ∈ IT , let Xt = Bt E
Q
t (X/BT ), then XT = X and X:t = Xt/Bt is a Q

martingale. By Martingale Representation Theorem, there exists a unique predictable process ht such

that

dX:t = htdZt = atdS:t

where at = htBt
σSt

. Let bt = Xt−atSt
Bt

, following from Proposition 7.2,Xt = atSt+btBt is a self-financing

portfolio. Thus, every T -claim can be replicated by a self-financing portfolio strategy.

Risk Neutral Valuation: The BST (r, µ, σ) market is complete, every T -claim X can be replicated by

a self-financing portfolio strategy {[at; bt]} such that Xt = atSt + btBt and
Xt

Bt
= EQ

t

(
X

BT

)

7.3.3 Black-Scholes Equation

Knowing that St is a Markov process in P world and in Q world, given a simple T -claimX = f(ST )

Xt = Bt E
Q

(
X

BT

∣∣∣∣ It) = Bt E
Q

(
X

BT

∣∣∣∣St) = e−r(T−t) EQ (f(ST ) |St)

Which shows that the price of any simple T -claim X = f(ST ) is a function of t and St, which can be

denoted by f(t, St). By Feynman-Kac formula

f(t, St) = e−r(T−t) EQ (f(ST ) |St)

is the solution to the following PDE (partial differential equation)
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
= rf (7.9)

the celebrated Black-Scholes equation.

By the completeness of BST (r, µ, σ) market, any simple T -claim X = f(ST ) = f(T, ST ) can be

replicated by a self-financing portfolio {[at; bt]}, and (drop the subscript for clarity)

df = adS + bdB

or (
∂f

∂t
+ µS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2

)
dt+ σS

∂f

∂S
dW = aµSdt+ aσSdW + bBrdt

thus

a =
∂f

∂S

b =
1

Br

(
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

)
Since aS + bB = f , there is

∂f

∂S
· S +

1

Br

(
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

)
·B = f



224 Options Pricing

Rearranging, we arrive at the Black-Scholes equation (7.9).

Remark: For a European call, the key financial insight behind the PDE is that one can perfectly hedge

the option by buying and selling the underlying asset in just the right way and consequently “eliminate

risk”: The equation can be rewritten in the form

f − S ∂f
∂S

=
1

r

(
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

)
the left hand side equals f−aS, the right hand side equals bB, which is riskless. Thus, the Black-Scholes

equation gives the details of the replicating portfolio.

Proposition 7.5: For any simple T -claim f(T, ST ), the stochastic process f(t, St) is a price process if

and only if f(t, St) satisfies the Black-Scholes equation (7.9).

Proof. Since dW = dZ − µ−r
σ dt

df − rfdt = ∂f

∂t
dt+

∂f

∂S
(µSdt+ σSdW ) +

1

2

∂2f

∂S2
σ2S2dt− rfdt

=

(
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2
− rf

)
dt+ µS

∂f

∂S
dt+ σS

∂f

∂S
dW

=

(
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
− rf

)
dt+ σS

∂f

∂S
dZ

Thus, f(t, St) is a price process ⇐⇒ f(t,St)
Bt

= EQ
t

(
f(T,ST )

BT

)
⇐⇒ d(f/B) is a Q martingale ⇐⇒

d(f/B) = (df − rfdt)/B has no drift terms in Q world ⇐⇒ f(t, St) satisfies the Black-Scholes

equation.

Proposition 7.5 validates the form f(t, St) as the price process of European call assumed luckily in

Black and Scholes (1973). Note that for non-simple T -claims, the price process may not take a form of

f(t, St). For example, the Asian option takes the form f(t, St, At) where At =
∫ t
0 S(u) du.



Black-Scholes Formula 225

§ 7.4 Black-Scholes Formula

Consider a European call option having strike price K and expiration time T . That is, the option

allows one to purchase a single unit of an underlying security S at time T for the price K.

Call C(S, T,K)

Put P (S, T,K)

Suppose that the nominal interest rate is constant r, compounded continuously, such that the risk-free

bond

Bt = ert =⇒ dBt

Bt
= rdt

and also that the price of the security follows a geometric Brownian motion (GBM) with drift parameter

µ and volatility parameter σ:

St = S0 exp

((
µ− σ2

2

)
t+ σWt

)
=⇒ dSt

St
= µdt+ σdWt

where Wt is the standard Brownian motion in continuous time, Wt ∼ N(0, t). Assuming that St follows

GBM means that

• ST has the lognormal distribution conditional on St

(ST |St) ∼ LN

(
ln (St) +

(
µ− σ2

2

)
(T − t), σ2(T − t)

)
equivalently ( ln (ST ) |St) ∼ N

(
ln (St) +

(
µ− σ2

2

)
(T − t), σ2(T − t)

)
• In Q world (risk neutral world), dS:t = σS:tdZt =⇒ dSt

St
= rdt+σdZt where Zt is the standard

Brownian motion in Q world. Hence, stock grows at risk free rate

(ST |St) ∼ LNQ

(
ln (St) +

(
r − σ2

2

)
(T − t), σ2(T − t)

)
• St is a Markov process in P world and in Q world, which means (ST | It) ∼ (ST |St)

EQ
t (f(ST )) = EQ (f(ST ) | It) = EQ (f(ST ) |St)

for contract function f(·).

Remark: in Q world, ST ∼ SteZT−t with ZT−t ∼ NQ((r − σ2/2)(T − t), σ2(T − t)).

7.4.1 Risk Neutral Valuation

Consider a derivative that provides a payoff at one particular time. It can be valued using risk-neutral

valuation by Eq (7.6): For any payoff X at time T , its value at time t is
Xt

Bt
= EQ

t

(
X

BT

)
When we change the (annualized log) expected return of the underlying asset to be the risk-free interest

rate, r (i.e., assume µt = rt)
dSt
St

= µdt+ σdWt =⇒ dSt
St

= rdt+ σdZt

We effectively change the real world probability, the P world, into risk-neutral world, the Q world.
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For the stock
St
Bt

= EQ
t

(
ST
BT

)
In the Black-Scholes market, r is a constant, e−rtSt = EQ(e−rTST

∣∣ It) = EQ(e−rTST
∣∣St).

Theorem 7.6 (Risk Neutral Valuation): In Black-Scholes market, the arbitrage free price of the simple

T -claim X = f(ST ) is given by

Xt = e−r(T−t) EQ (f(ST ) |St)

Binary options1 are options with discontinuous payoffs. A simple example of a binary option is a

cash-or-nothing call. A standard cash-or-nothing call pays off nothing if the stock price ends up below

the strike price K at time T , and pays one dollar if it ends up above the strike price.

In the risk neutral world, the probability (conditional on current stock price St) that the stock price

ends up above the strike price is (following from Eq 7.14)

Q(ST > K |St) = N(d2)

with

d2 =
ln(St/K) +

(
r − σ2/2

)
(T − t)

σ
√
T − t

thus, the price of this cash-or-nothing call is

Cc(t) = e−r(T−t) EQ (1ST>K |St) = e−r(T−t)Q(ST > K |St) = e−r(T−t)N(d2)

Remark: it can be verify that Cc(T ) = 1ST>K as t→ T in Cc(t)

An asset-or-nothing call pays off nothing if the underlying stock price ends up below the strike price

and pays an amount equal to the stock price itself if it ends up above the strike price.

For the asset-or-nothing call, the expectation of the payoff at T is, following from Eq (7.15)

EQ (ST · 1ST>K |St) = Ste
r(T−t)N(d1)

with

d1 =
ln (St/K) +

(
r + σ2/2

)
(T − t)

σ
√
T − t

Now we find the price of the asset-or-nothing call

Ca(t) = e−r(T−t) EQ (ST · 1ST>K |St) = StN(d1)

7.4.2 European Call and Put Options

We are now ready to present the most celebrated formula in the theory of finance, the Black-Scholes

option pricing formula

Ct = StN(d1)− e−r(T−t)KN(d2) (7.10)

1In contrast to ordinary financial options that typically have a continuous spectrum of payoff. The payoff of a binary option

can take only two possible outcomes, either some fixed monetary amount (or a precise predefined quantity or units of some

asset) or nothing at all. They are also called all-or-nothing options, digital options (more common in forex/interest rate markets),

and fixed return options (FROs) (on the American Stock Exchange).
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where

d1 =
ln(St/K) + (r + σ2/2)(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t

For the payoff of a European call at time T is

(ST −K)+ = (ST −K) · 1ST>K = ST 1ST>K −K1ST>K

The call option is decomposed into two options: short K standard cash-or-nothing and long an asset-or-

nothing call. Finally, the price of the call is

Ct = Ca(t)−K · Cc(t)

Remark: time is measured in year

The

Ct = C(t, St, T,K, σ, r)

is a function of six variables.

It follows that the price of the option depends on the underlying Brownian motion only through its

volatility parameter σ and not its drift parameter µ.

Given r constant, option price is unchanged if the security’s price over time is assumed to follow a

geometric Brownian motion with a fixed volatility σ but with a drift that varies over time.

It follows from the put-call parity that the price of a European put option with initial price St, strike

price K, and exercise time T , denoted by Pt, is given by

Pt = Ct +Ke−r(T−t) − St = e−r(T−t)KN(−d2)− StN(−d1) (7.11)

Remark: Black-Scholes option pricing formula (7.10) can be solved by Black-Scholes equation (7.9)

with boundary condition f(T, ST ) = (ST − K)+. The Feynman-Kac formula shows that these two

methods lead to the same formula.

A: Properties of the Black-Scholes Formulas

What happens when some of the parameters take extreme values?

CT = lim
t→T

Ct = (ST −K)+

is the payoff at time T

When the stock price, St, becomes very large, a call option is almost certain to be exercised. It then

becomes very similar to a forward contract with delivery price K.

St → +∞ =⇒ Ct → St − e−r(T−t)K

Pt → 0

this is consistent with the Black-Scholes Formulas, For

St →∞ =⇒ d1, d2 → +∞ =⇒ N (d1) , N (d2)→ 1

What should the cost of a European call option become as the volatility becomes smaller and smaller?

As volatility approaches zero, the stock is virtually riskless, its price will grow at risk-free rate r: At time
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T and the payoff from a call option is

(Ste
r(T−t) −K)+

thus the value of the call today is the discounted value

(St −Ke−r(T−t))+

this is consistent with equation (7.10):

• If St > Ke−r(T−t), Ct → St − e−r(T−t)K. For

σ → 0 =⇒ d1, d2 → +∞ =⇒ N (d1) , N (d2)→ 1

• If St = Ke−r(T−t), Ct = 0. For

σ → 0 =⇒ d1, d2 → 0 =⇒ N (d1) , N (d2)→ 1/2

• If St < Ke−r(T−t), Ct = 0. For

σ → 0 =⇒ d1, d2 → −∞ =⇒ N (d1) , N (d2)→ 0

B: At the Money

The price of an at-the-money call option on an asset is proportional to the asset price: By K = St

a1 =

(
r + σ2/2

)
(T − t)

σ
√
T − t

a2 = a1 − σ
√
T − t =

(
r − σ2/2

)
(T − t)

σ
√
T − t

then

Ct = StN (a1)− e−r(T−t)KN (a2) = Ct(1, T, 1)St ∝ St

for

Ct(1, T, 1) ≡ N (a1)− e−r(T−t)N (a2)

is a constant given the market setting of BST (r, µ, σ), it does not depend on St.

Similarly, the price of an at-the-money put option on an asset is proportional to the asset price.

Pt = e−r(T−t)KN(−a2)− StN(−a1) = [e−r(T−t)N(−a2)−N(−a1)]St ∝ St

7.4.3 Exotic Options

Application of BS formula

A: Chooser Option

The chooser option is an exotic option that gives the holder the right to choose, at some future date

u, 0 < u < T , between a European call and put written on the same underlying asset

1. Show that the value of the chooser option at time t = u is

Vu = C(Su, T,K) + (Ke−r(T−u) − Su)+

2. Compute the price of chooser option at time t = 0
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At t = u, let Cu = C(Su, T,K) and Pu = P (Su, T,K), the holder of the chooser option will pick

the one with a higher value, thus

Vu = max(Cu, Pu)

= max(Cu, Cu +Ke−r(T−u) − Su)

= Cu + (Ke−r(T−u) − Su)+

= C(Su, T,K) + P (Su, u,Ke
−r(T−u))

the chooser option is a portfolio of a call option expiring at T with strike price K, and a put expiring at

u with strike price Ke−r(T−u). Thus the price at t = 0 is

V0 = ℘(Vu) = C (S0, T,K) + P
(
S0, u,Ke

−r(T−u)
)

using BS formula to write out the detail.

B: Pay-later Option

A Pay-later option, also known as a contingent premium option, is a standard European option except

that the buyer pays an amount A only at maturity of the option and if the option is in the money. The

amount A is chosen so that the value of the option at time zero is zero. Find out the amount A in a

pay-later call option.

This option is equivalent to a portfolio consisting of one standard European call option with strike K

and maturity T , and short A digital call options (cash or nothing) with maturity T . The payoff at T is

X = max (ST −K, 0)−A · 1 (ST > K)

At time 0

0 = ℘(X) = ℘(C(ST , T,K))−A℘(Cc(T ))

= C(S0, T,K)−A · Cc(0)

= S0N (d1)− e−rTKN (d2)−Ae−rTN (d2)

thus

A = S0e
rT N (d1)

N (d2)
−K

C: Ratchet Option

A two-leg ratchet call option can be described as follows. Two times u and T are fixed, 0 < u < T .

At time zero an initial strike price K is set. At time u the strike is reset to Su. At the maturity time T the

holder receives the payoff

(ST − Su)+ + (Su −K)+
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Compute the price of this option at t < u.

For

VT = (ST − Su)+ + (Su −K)+ = C(ST , T, Su) + C(Su, u,K)

when u 6 t 6 T , C(Su, u,K) = (Su −K)+ is a known number

Vt = ℘(VT ) = ℘(C(ST , T, Su)) + ℘(C(Su, u,K))

= C(St, T, Su) + C(Su, u,K)℘(1)

= C(St, T, Su) + e−r(T−t)C(Su, u,K)

note that at t = u (at the money, call price proportional to stock price, C(Su, T, Su) = Cu(1, T, 1)Su,

and Cu(1, T, 1) is a constant for fixed u and T )

Vu = Cu(1, T, 1)Su + e−r(T−u)C(Su, u,K)

The value at t < u is

Vt = ℘(Vu) = ℘(Cu(1, T, 1)Su) + ℘(e−r(T−u)C(Su, u,K))

= Cu(1, T, 1)℘(Su) + e−r(T−u)℘(C(Su, u,K))

= Cu(1, T, 1)St + e−r(T−u)C(St, u,K)
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§ 7.5 Exercise

7.1 Show that (Triangle Inequality)

(a+ b)+ 6 a+ + b+

and

max(a+ c, b+d) 6 max(a, b)+max(c, d)

7.2 Let X ∼ LN(µ, σ2), and a > 0, compute

(a) E(1X>a), E(X · 1X>a) and E(X2 ·
1X>a).

(b) E(1X6a), E(X · 1X6a) and E(X2 ·
1X6a)

7.3 Let X ∼ LN(µ, σ2), compute E (X) and

var(X).

7.4 Let Y = ln (X) ∼ N(µ, σ2), dQ
dP =

X/E(X) = eY−µ−σ2/2. Show that

(a) Y ∼ NQ(µ+ σ2, σ2)

(b) For any a > 0, Q(X > a) =

N
(
µ−ln(a)

σ + σ
)

(c) E(X · 1X>a) = eµ+σ2/2Q(X > a)

7.5 Given Eq (7.1), show that

Sn = S0e
µnhecRne−nc2/2

7.6 Given Eq (7.3), show that

lim
N→∞

q =
1

2
and

lim
N→∞

N1/2(2q − 1) = t1/2
γ

σ
7.7 Show that CA(t) > CE(t) and PA(t) >

PE(t).

7.8 Let Pt be the price of a European put, show

that Pt is an increasing, convex function of

K. And for h > 0, Pt(S, T,K + h) −
Pt(S, T,K) 6 e−r(T−t)h (We do not as-

sume the BS market)

7.9 A forward contract delivered at T , is made

at time t on the claim X . Let interest rate r

be constant and t < U < T

(a) Find the value for this contract at time

U

(b) Find the value for this contract at time

U if X = ST

7.10 Let the intrinsic value of a call at time t be

Vt = V (St) = (St −K)+

where 0 6 t 6 T and K > 0.

(a) Show that when x > 0 and 0 6 l 6 1,

V (lx) 6 lV (x)

(b) Show that e−rtVt is a submartingale

(Et (Xu) > Xt, t < u) under Q in the

Black-Scholes market

(c) Let Ct be the price of European call,

show thatCt > Vt in the Black-Scholes

market

7.11 In the Black-Scholes market, a cash-or-

nothing call pays off nothing if the stock

price ends up below the strike price K at

time T , and pays a fixed amount, one dollar,

if it ends up above the strike price. Find the

price of the call.

7.12 In the Black-Scholes market, find the price of

asset-or-nothing call, which pays off nothing

if the underlying stock price ends up below

the strike price and pays an amount equal to

the stock price itself if it ends up above the

strike price.

7.13 Golden Logarithm: A contingent claim of

the form X = ln(ST ). Note that if ST < 1,

this means that the holder has to pay a pos-

itive amount. Please find the price for this

derivative in the Black-Scholes market.

7.14 Ratio derivative: Two times 0 < u < T are

fixed. The derivative matures at time T with
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payoff ST /Su. Find the value of the deriva-

tive at times t < u in the Black-Scholes mar-

ket.

7.15 Let St be price of a stock, and an option with

payoff at T is S1/3
T . Find the price of the op-

tion at time t in the Black-Scholes market.

7.16 Let St be price of a stock, and an option

with payoff at T is S2
T . Find the price of the

option at time t in the Black-Scholes market.




